IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Identification-robust estimation and testing of the zero-beta CAPM

  • Marie-Claude Beaulieu
  • Jean-Marie Dufour
  • Lynda Khalaf

We propose exact simulation-based procedures for: (i) testing mean-variance efficiency when the zero-beta rate is unknown, and (ii) building confidence intervals for the zero-beta rate. On observing that this parameter may be weakly identified, we propose LR-type statistics as well as heteroskedascity and autocorrelation corrected (HAC) Wald-type procedures, which are robust to weak identification and allow for non-Gaussian distributions including parametric GARCH structures. In particular, we propose confidence sets for the zero-beta rate based on inverting exact tests for this parameter; these sets provide a multivariate extension of Fieller's technique for inference on ratios. The exact distribution of LR-type statistics for testing efficiency is studied under both the null and the alternative hypotheses. The relevant nuisance parameter structure is established and finite-sample bound procedures are proposed, which extend and improve available Gaussianspecific bounds. Furthermore, we study the invariance to portfolio repacking property for tests and confidence sets proposed. The statistical properties of available and proposed methods are analyzed via aMonte Carlo study. Empirical results on NYSE returns show that exact confidence sets are very different from the asymptotic ones, and allowing for non-Gaussian distributions affects inference results. Simulation and empirical results suggest that LR-type statistics - with p-values corrected using the Maximized Monte Carlo test method - are generally preferable to their Wald-HAC counterparts from the viewpoints of size control and power.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2011s-21.

in new window

Length: 35 pages
Date of creation: 01 Feb 2011
Date of revision:
Handle: RePEc:cir:cirwor:2011s-21
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2011s-21. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.