IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Comparing the asymptotic and empirical (un)conditional distributions of OLS and IV in a linear static simultaneous equation

Listed author(s):
  • Kiviet, Jan F.
  • Niemczyk, Jerzy

In designing Monte Carlo simulation studies for analyzing finite sample properties of econometric inference methods, one can use either IID drawings in each replication for any series of exogenous explanatory variables or condition on just one realization of these. The results will usually differ, as do their interpretations. Conditional and unconditional limiting distributions are often equivalent, thus yielding similar asymptotic approximations. However, when an estimator is inconsistent, its limiting distribution may change under conditioning. These phenomena are analyzed and numerically illustrated for OLS (ordinary least-squares) and IV (instrumental variables) estimators in single static linear simultaneous equations. The results obtained supplement–and occasionally correct–earlier results. The findings demonstrate in particular that the asymptotic approximations to the unconditional and a conditional distribution of OLS are very accurate even in small samples, and that the actual absolute estimation errors of inconsistent OLS in finite samples are often much smaller than those of consistent IV, even when the instruments are not extremely weak. It is also shown that conditioning reduces the estimation errors of OLS, whereas it deranges the distribution of IV when instruments are weak. Finally it is indicated how OLS could be modified to produce accurate inference under assumptions regarding the degree of simultaneity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167947310003154
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 56 (2012)
Issue (Month): 11 ()
Pages: 3567-3586

as
in new window

Handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3567-3586
DOI: 10.1016/j.csda.2010.07.028
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
  2. Joseph, Agnes S. & Kiviet, Jan F., 2005. "Viewing the relative efficiency of IV estimators in models with lagged and instantaneous feedbacks," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 417-444, April.
  3. Hillier, Grant, 2006. "Yet More On The Exact Properties Of Iv Estimators," Econometric Theory, Cambridge University Press, vol. 22(05), pages 913-931, October.
  4. Mikusheva, Anna, 2010. "Robust confidence sets in the presence of weak instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 236-247, August.
  5. Edgerton, David L., 1996. "Should stochastic or non-stochastic exogenous variables be used in Monte Carlo experiments?," Economics Letters, Elsevier, vol. 53(2), pages 153-159, November.
  6. Woglom, Geoffrey, 2001. "More Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 69(5), pages 1381-1389, September.
  7. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1130-1164, December.
  8. Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3567-3586. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.