IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1749.html
   My bibliography  Save this paper

Power Maximization and Size Control in Heteroskedasticity and Autocorrelation Robust Tests with Exponentiated Kernels

Author

Listed:

Abstract

Using the power kernels of Phillips, Sun and Jin (2006, 2007), we examine the large sample asymptotic properties of the t-test for different choices of power parameter (rho). We show that the nonstandard fixed-rho limit distributions of the t-statistic provide more accurate approximations to the finite sample distributions than the conventional large-rho limit distribution. We prove that the second-order corrected critical value based on an asymptotic expansion of the nonstandard limit distribution is also second-order correct under the large-rho asymptotics. As a further contribution, we propose a new practical procedure for selecting the test-optimal power parameter that addresses the central concern of hypothesis testing: the selected power parameter is test-optimal in the sense that it minimizes the type II error while controlling for the type I error. A plug-in procedure for implementing the test-optimal power parameter is suggested. Simulations indicate that the new test is as accurate in size as the nonstandard test of Kiefer and Vogelsang (2002a, 2002b; KV), and yet it does not incur the power loss that often hurts the performance of the latter test. The new test therefore combines the advantages of the KV test and the standard (MSE optimal) HAC test while avoiding their main disadvantages (power loss and size distortion, respectively). The results complement recent work by Sun, Phillips and Jin (2008) on conventional and bT HAC testing.

Suggested Citation

  • Yixiao Sun & Peter C.B. Phillips & Sainan Jin, 2010. "Power Maximization and Size Control in Heteroskedasticity and Autocorrelation Robust Tests with Exponentiated Kernels," Cowles Foundation Discussion Papers 1749, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1749
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d17/d1749.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(01), pages 116-142, February.
    2. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
    3. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(03), pages 497-539, June.
    4. Surajit Ray & N. E. Savin, 2008. "The performance of heteroskedasticity and autocorrelation robust tests: a Monte Carlo study with an application to the three-factor Fama-French asset-pricing model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 91-109.
    5. Peter C. B. Phillips & Yixiao Sun & Sainan Jin, 2006. "Spectral Density Estimation And Robust Hypothesis Testing Using Steep Origin Kernels Without Truncation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(3), pages 837-894, August.
    6. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    7. repec:wop:calsdi:96-17 is not listed on IDEAS
    8. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    9. Wouter Denhaan & Andrew T. Levin, 1996. "VARHAC Covariance Matrix Estimator (GAUSS)," QM&RBC Codes 64, Quantitative Macroeconomics & Real Business Cycles.
    10. Donggyu Sul & Peter C. B. Phillips & Chi-Young Choi, 2005. "Prewhitening Bias in HAC Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(4), pages 517-546, August.
    11. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1130-1164, December.
    12. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1350-1366, December.
    13. Robert M. De Jong & James Davidson, 2000. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, Econometric Society, vol. 68(2), pages 407-424, March.
    14. Sun, Yixiao, 2004. "Estimation Of The Long-Run Average Relationship In Nonstationary Panel Time Series," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1227-1260, December.
    15. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1449-1459, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pötscher, Benedikt M. & Preinerstorfer, David, 2016. "Controlling the Size of Autocorrelation Robust Tests," MPRA Paper 75657, University Library of Munich, Germany.
    2. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    3. Sun, Yixiao, 2013. "Fixed-smoothing Asymptotics in a Two-step GMM Framework," University of California at San Diego, Economics Working Paper Series qt64x4z265, Department of Economics, UC San Diego.
    4. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(02), pages 261-358, April.
    5. Preinerstorfer, David, 2014. "Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators," MPRA Paper 58333, University Library of Munich, Germany.

    More about this item

    Keywords

    Asymptotic expansion; HAC estimation; Long run variance; Loss function; Optimal smoothing parameter; Power kernel; Power maximization; Size control; Type I error; Type II error;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1749. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.