IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v21y2005i01p116-142_05.html
   My bibliography  Save this article

Hac Estimation By Automated Regression

Author

Listed:
  • Phillips, Peter C.B.

Abstract

A simple regression approach to HAC and LRV estimation is suggested. The method exploits the fact that the quantities of interest relate to only one point of the spectrum (the origin). The new estimator is simply the explained sum of squares in a linear regression whose regressors are a set of trend basis functions. Positive definiteness in the estimate is therefore automatically enforced and the technique can be implemented with standard regression packages. No kernel choice is needed in practical implementation but basis functions need to be chosen and a smoothing parameter corresponding to the number of basis functions needs to be selected. An automated approach to making this selection based on optimizing the asymptotic mean squared error is derived. The limit theory of the new estimator shows that its properties, including the convergence rate, are comparable to those of conventional HAC estimates constructed from quadratic kernels.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(01), pages 116-142, February.
  • Handle: RePEc:cup:etheor:v:21:y:2005:i:01:p:116-142_05
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466605050085
    File Function: link to article abstract page
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    2. Donggyu Sul & Peter C. B. Phillips & Chi-Young Choi, 2005. "Prewhitening Bias in HAC Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(4), pages 517-546, August.
    3. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    6. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    7. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    8. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    9. repec:wop:calsdi:96-17 is not listed on IDEAS
    10. Wouter Denhaan & Andrew T. Levin, 1996. "VARHAC Covariance Matrix Estimator (GAUSS)," QM&RBC Codes 64, Quantitative Macroeconomics & Real Business Cycles.
    11. Peter C.B. Phillips, 1996. "Spurious Regression Unmasked," Cowles Foundation Discussion Papers 1135, Cowles Foundation for Research in Economics, Yale University.
    12. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Jungbin & Sun, Yixiao, 2016. "Simple, Robust, and Accurate F and t Tests in Cointegrated Systems," University of California at San Diego, Economics Working Paper Series qt82k1x4rd, Department of Economics, UC San Diego.
    2. Zhang, Xianyang & Shao, Xiaofeng, 2013. "On a general class of long run variance estimators," Economics Letters, Elsevier, vol. 120(3), pages 437-441.
    3. Peter C.B. Phillips & Zhipeng Liao, 2012. "Series Estimation of Stochastic Processes: Recent Developments and Econometric Applications," Cowles Foundation Discussion Papers 1871, Cowles Foundation for Research in Economics, Yale University.
    4. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(01), pages 3-20, February.
    5. Linton, Oliver, 2005. "Nonparametric Inference For Unbalanced Time Series Data," Econometric Theory, Cambridge University Press, vol. 21(01), pages 143-157, February.
    6. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(01), pages 158-170, February.
    7. Sun, Yixiao & Phillips, Peter C.B. & Jin, Sainan, 2011. "Power Maximization And Size Control In Heteroskedasticity And Autocorrelation Robust Tests With Exponentiated Kernels," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1320-1368, December.
    8. Surajit Ray & N. E. Savin, 2008. "The performance of heteroskedasticity and autocorrelation robust tests: a Monte Carlo study with an application to the three-factor Fama-French asset-pricing model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 91-109.
    9. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    10. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    11. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    12. Xiaohong Chen & Zhipeng Liao & Yixiao Sun, 2012. "Sieve Inference on Semi-nonparametric Time Series Models," Cowles Foundation Discussion Papers 1849, Cowles Foundation for Research in Economics, Yale University.
    13. repec:eme:aecozz:s0731-905320140000033002 is not listed on IDEAS
    14. Yixiao Sun, 2014. "Fixed-smoothing Asymptotics and Asymptotic : F: and : t: Tests in the Presence of Strong Autocorrelation," Advances in Econometrics,in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 23-63 Emerald Publishing Ltd.
    15. Tanaka, Katsuto, 2011. "Linear Nonstationary Models : A Review of the Work of Professor P.C.B. Phillips," Discussion Papers 2011-05, Graduate School of Economics, Hitotsubashi University.
    16. Sun, Yixiao, 2013. "Fixed-smoothing Asymptotics in a Two-step GMM Framework," University of California at San Diego, Economics Working Paper Series qt64x4z265, Department of Economics, UC San Diego.
    17. Chen, Xiaohong & Liao, Zhipeng, 2015. "Sieve semiparametric two-step GMM under weak dependence," Journal of Econometrics, Elsevier, vol. 189(1), pages 163-186.
    18. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(02), pages 261-358, April.
    19. Sun, Yixiao, 2011. "Robust trend inference with series variance estimator and testing-optimal smoothing parameter," Journal of Econometrics, Elsevier, vol. 164(2), pages 345-366, October.
    20. Landajo, Manuel & Presno, María José, 2010. "Nonparametric pseudo-Lagrange multiplier stationarity testing," MPRA Paper 25659, University Library of Munich, Germany.
    21. Manuel Landajo & María José Presno, 2010. "Stationarity testing under nonlinear models. Some asymptotic results," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 392-405, September.
    22. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    23. Peter C.B. Phillips & Yixiao Sun & Sainan Jin, 2005. "Improved HAR Inference," Cowles Foundation Discussion Papers 1513, Cowles Foundation for Research in Economics, Yale University.
    24. Hwang, Jungbin & Sun, Yixiao, 2015. "Should We Go One Step Further? Â An Accurate Comparison of One-step and Two-step Procedures in a Generalized Method of Moments Framework," University of California at San Diego, Economics Working Paper Series qt58r2z98m, Department of Economics, UC San Diego.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:21:y:2005:i:01:p:116-142_05. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.