IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i01p1-68_00.html

On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix

Author

Listed:
  • Preinerstorfer, David
  • Pötscher, Benedikt M.

Abstract

The behavior of the power function of autocorrelation tests such as the Durbin–Watson test in time series regressions or the Cliff-Ord test in spatial regression models has been intensively studied in the literature. When the correlation becomes strong, Krämer (1985, Journal of Econometrics 28, 363–370.) (for the Durbin–Watson test) and Krämer (2005, Journal of Statistical Planning and Inference, 128, 489–496) (for the Cliff-Ord test) have shown that power can be very low, in fact can converge to zero, under certain circumstances. Motivated by these results, Martellosio (2010, Econometric Theory, 26, 152–186) set out to build a general theory that would explain these findings. Unfortunately, Martellosio (2010) does not achieve this goal, as a substantial portion of his results and proofs suffer from nontrivial flaws. The present paper now builds a theory as envisioned in Martellosio (2010) in an even more general framework, covering general invariant tests of a hypothesis on the disturbance covariance matrix in a linear regression model. The general results are then specialized to testing for spatial correlation and to autocorrelation testing in time series regression models. We also characterize the situation where the null and the alternative hypothesis are indistinguishable by invariant tests.

Suggested Citation

  • Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:01:p:1-68_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S026646661500033X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    2. Federico Martellosio, 2020. "Non-Identifiability in Network Autoregressions," Papers 2011.11084, arXiv.org, revised Jun 2022.
    3. Federico Martellosio & Grant Hillier, 2019. "Adjusted QMLE for the spatial autoregressive parameter," Papers 1909.08141, arXiv.org.
    4. David Preinerstorfer, 2018. "How to avoid the zero-power trap in testing for correlation," Papers 1812.10752, arXiv.org.
    5. Preinerstorfer, David, 2014. "Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators," MPRA Paper 58333, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:01:p:1-68_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.