IDEAS home Printed from
   My bibliography  Save this paper

Finite-Sample Power of the Durbin-Watson Test Against Fractionally Integrated Disturbances


  • Prof. Dr. Walter Krämer

    () (Faculty of Statistics, Dortmund University of Technology)

  • Christian Kleiber


We consider the finite-sample power of various tests against serial correlation in the disturbances of a linear regression model when these disturbances follow certain stationary long-memory processes. It emerges that the power depends on the form of the regressor matrix and that, for the Durbin--Watson test and many other tests that can be written as ratios of quadratic forms in the disturbances, the power can drop to zero as the long-memory parameter approaches the boundary of the stationarity region. The problem does not arise when the regression includes an intercept. We also provide a means to detect this zero-power trap for given regressors. Our analytical results are illustrated using fractionally integrated white noise and ARFIMA(1, d, 0) disturbances with artificial regressors and with a real data set. Copyright 2005 Royal Economic Society
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Prof. Dr. Walter Krämer & Christian Kleiber, "undated". "Finite-Sample Power of the Durbin-Watson Test Against Fractionally Integrated Disturbances," Working Papers 10, Business and Social Statistics Department, Technische Universität Dortmund.
  • Handle: RePEc:dor:wpaper:10

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(01), pages 1-68, February.
    2. Anurag Banerjee, 2004. "Sensitivity of OLS estimates against ARFIMA error process as small sample Test for long memory," Econometric Society 2004 Australasian Meetings 159, Econometric Society.
    3. Martellosio, Federico, 2008. "Power Properties of Invariant Tests for Spatial Autocorrelation in Linear Regression," MPRA Paper 7255, University Library of Munich, Germany.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dor:wpaper:10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Prof. Dr. Walter Krämer). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.