IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Finite sample of the Durbin-Watson test against fractionally integrated disturbances

  • Kleiber, Christian
  • Krämer, Walter

We consider the finite sample power of various tests against serial correlation in the disturbances of a linear regression when these disturbances follow a stationary long memory process. It emerges that the power depends on the form of the regressor matrix and that, for the Durbin-Watson test and many other tests that can be written as ratios of quadratic forms in the disturbances, the power can drop to zero for certain regressors. We also provide a means to detect this zero-power trap. Our results depend solely on the correlation structure and allow for fairly arbitrary nonlinearities.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen in its series Technical Reports with number 2004,15.

in new window

Date of creation: 2004
Date of revision:
Handle: RePEc:zbw:sfb475:200415
Contact details of provider: Postal: Vogelpothsweg 78, D-44221 Dortmund
Phone: (0231) 755-3125
Fax: (0231) 755-5284
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. King, Maxwell L. & Evans, Merran A., 1988. "Locally Optimal Properties of the Durbin-Watson Test," Econometric Theory, Cambridge University Press, vol. 4(03), pages 509-516, December.
  2. Nakamura, Shisei & Taniguchi, Masanobu, 1999. "Asymptotic Theory For The Durbin Watson Statistic Under Long-Memory Dependence," Econometric Theory, Cambridge University Press, vol. 15(06), pages 847-866, December.
  3. King, Maxwell L., 1985. "A point optimal test for autoregressive disturbances," Journal of Econometrics, Elsevier, vol. 27(1), pages 21-37, January.
  4. Bartels, Robert, 1992. "On the power function of the Durbin-Watson test," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 101-112.
  5. Kleiber, Christian, 2000. "Finite sample efficiency of OLS in linear regression models with long-memory disturbances," Technical Reports 2000,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  6. King, M. L., 1981. "The alternative Durbin-Watson test : An assessment of Durbin and Watson's choice of test statistic," Journal of Econometrics, Elsevier, vol. 17(1), pages 51-66, September.
  7. W. Tsay, 1998. "On the power of durbin-watson statistic against fractionally integrated processes," Econometric Reviews, Taylor & Francis Journals, vol. 17(4), pages 361-386.
  8. Kramer, W., 1985. "The power of the Durbin-Watson test for regressions without an intercept," Journal of Econometrics, Elsevier, vol. 28(3), pages 363-370, June.
  9. Nabeya, Seiji & Tanaka, Katsuto, 1990. "Limiting power of unit-root tests in time-series regression," Journal of Econometrics, Elsevier, vol. 46(3), pages 247-271, December.
  10. Kramer, Walter & Zeisel, Helmut, 1990. "Finite sample power of linear regression autocorrelation tests," Journal of Econometrics, Elsevier, vol. 43(3), pages 363-372, March.
  11. Hisamatsu, Hiroyuki & Maekawa, Koichi, 1994. "The distribution of the Durbin-Watson statistic in integrated and near-integrated models," Journal of Econometrics, Elsevier, vol. 61(2), pages 367-382, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200415. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.