IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/898r.html
   My bibliography  Save this paper

The Durbin-Watson Ratio Under Infinite Variance Errors

Author

Abstract

This paper studies the properties of the von Neumann ratio for time series with infinite variance. The asymptotic theory is developed using recent results on the weak convergence of partial sums of time series with infinite variance to stable processes and of sample serial correlations to functions of stable variables. Our asymptotics cover the null of iid variates and general moving average (MA) alternatives. Regression residuals are also considered. In the static regression model the Durbin-Watson statistic has the same limit distribution as the von Neumann ratio under general conditions. However, the dynamic models, the results are more complex and more interesting. When the regressors have thicker tail probabilities than the errors we find that the Durbin-Watson and von Neumann ration asymptotics are the same.

Suggested Citation

  • Peter C.B. Phillips & Mico Loretan, 1989. "The Durbin-Watson Ratio Under Infinite Variance Errors," Cowles Foundation Discussion Papers 898R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1989.
  • Handle: RePEc:cwl:cwldpp:898r
    Note: CFP 772.
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d08/d0898-r.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W.K. Andrews, 1986. "On the Performance of Least Squares in Linear Regression with Undefined Error Means," Cowles Foundation Discussion Papers 798, Cowles Foundation for Research in Economics, Yale University.
    2. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    3. Kariya, Takeaki, 1988. "The Class of Models for which the Durbin-Watson Test is Locally Optimal," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 167-175, February.
    4. repec:jns:jbstat:v:185:y:1971:i:4:p:345-358:n:5 is not listed on IDEAS
    5. King, Maxwell L. & Evans, Merran A., 1988. "Locally Optimal Properties of the Durbin-Watson Test," Econometric Theory, Cambridge University Press, vol. 4(03), pages 509-516, December.
    6. Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
    7. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    8. King, Maxwell L. & Wu, Ping X., 1991. "Small-disturbance asymptotics and the Durbin-Watson and related tests in the dynamic regression model," Journal of Econometrics, Elsevier, vol. 47(1), pages 145-152, January.
    9. Bartels, Robert & Goodhew, John, 1981. "The Robustness of the Durbin-Watson Test," The Review of Economics and Statistics, MIT Press, vol. 63(1), pages 136-139, February.
    10. Peter C.B. Phillips & Vassilis A. Hajivassiliou, 1987. "Bimodal t-Ratios," Cowles Foundation Discussion Papers 842, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    2. Kurz-Kim, Jeong-Ryeol & Loretan, Mico, 2014. "On the properties of the coefficient of determination in regression models with infinite variance variables," Journal of Econometrics, Elsevier, vol. 181(1), pages 15-24.
    3. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Trapani, Lorenzo, 2016. "Testing for (in)finite moments," Journal of Econometrics, Elsevier, vol. 191(1), pages 57-68.
    5. Huston McCulloch, J. & Panton, Don B., 1997. "Precise tabulation of the maximally-skewed stable distributions and densities," Computational Statistics & Data Analysis, Elsevier, vol. 23(3), pages 307-320, January.
    6. Mikael Linden, 1992. "Stochastic and deterministic trends in Finnish macroeconomic time series," Finnish Economic Papers, Finnish Economic Association, vol. 5(2), pages 110-116, Autumn.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:898r. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.