IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

The Durbin-Watson ratio under infinite-variance errors

  • Phillips, Peter C. B.
  • Loretan, Mico

This paper studies the properties of the von Neumann ratio for time series with infinite variance. The asymptotic theory is developed using recent results on the weak convergence of partial sums of time series with infinite variance to stable processes and of sample serial correlations to functions of stable variables. Our asymptotics cover the null of iid variates and general moving average (MA) alternatives. Regression residuals are also considered. In the static regression model the Durbin-Watson statistic has the same limit distribution as the von Neumann ratio under general conditions. However, the dynamic models, the results are more complex and more interesting. When the regressors have thicker tail probabilities than the errors we find that the Durbin-Watson and von Neumann ration asymptotics are the same.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 47 (1991)
Issue (Month): 1 (January)
Pages: 85-114

in new window

Handle: RePEc:eee:econom:v:47:y:1991:i:1:p:85-114
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. King, Maxwell L. & Evans, Merran A., 1988. "Locally Optimal Properties of the Durbin-Watson Test," Econometric Theory, Cambridge University Press, vol. 4(03), pages 509-516, December.
  2. Donald W.K. Andrews, 1986. "On the Performance of Least Squares in Linear Regression with Undefined Error Means," Cowles Foundation Discussion Papers 798, Cowles Foundation for Research in Economics, Yale University.
  3. Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
  4. Peter C.B. Phillips & Vassilis A. Hajivassiliou, 1987. "Bimodal t-Ratios," Cowles Foundation Discussion Papers 842, Cowles Foundation for Research in Economics, Yale University.
  5. Kariya, Takeaki, 1988. "The Class of Models for which the Durbin-Watson Test is Locally Optimal," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 167-75, February.
  6. Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
  7. Bartels, Robert & Goodhew, John, 1981. "The Robustness of the Durbin-Watson Test," The Review of Economics and Statistics, MIT Press, vol. 63(1), pages 136-39, February.
  8. King, Maxwell L. & Wu, Ping X., 1991. "Small-disturbance asymptotics and the Durbin-Watson and related tests in the dynamic regression model," Journal of Econometrics, Elsevier, vol. 47(1), pages 145-152, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:47:y:1991:i:1:p:85-114. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.