IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i4d10.1007_s00362-023-01462-9.html
   My bibliography  Save this article

On the limit distribution of the power function induced by a design prior

Author

Listed:
  • Fulvio De Santis

    (Sapienza University of Rome)

  • Stefania Gubbiotti

    (Sapienza University of Rome)

Abstract

The hybrid frequentist-Bayesian approach to sample size determination is based on the expectation of the power function of a test with respect to a design prior for the unknown parameter value. In clinical trials this quantity is often called probability of success (PoS). Determination of the limiting value of PoS as the number of observations tends to infinity, that is crucial for well defined sample size criteria, has been considered in previous articles. Here, we focus on the asymptotic behavior of the whole distribution of the power function induced by the design prior. Under mild conditions, we provide asymptotic results for the three most common classes of hypotheses on a scalar parameter. The impact of the design parameters choice on the distribution of the power function and on its limit is discussed.

Suggested Citation

  • Fulvio De Santis & Stefania Gubbiotti, 2024. "On the limit distribution of the power function induced by a design prior," Statistical Papers, Springer, vol. 65(4), pages 1927-1945, June.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01462-9
    DOI: 10.1007/s00362-023-01462-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01462-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01462-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartels, Robert, 1992. "On the power function of the Durbin-Watson test," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 101-112.
    2. Anthony O’Hagan & John W. Stevens, 2001. "Bayesian Assessment of Sample Size for Clinical Trials of Cost-Effectiveness," Medical Decision Making, , vol. 21(3), pages 219-230, May.
    3. Kevin Kunzmann & Michael J. Grayling & Kim May Lee & David S. Robertson & Kaspar Rufibach & James M. S. Wason, 2021. "A Review of Bayesian Perspectives on Sample Size Derivation for Confirmatory Trials," The American Statistician, Taylor & Francis Journals, vol. 75(4), pages 424-432, October.
    4. Pierpaolo Brutti & Fulvio Santis & Stefania Gubbiotti, 2014. "Bayesian-frequentist sample size determination: a game of two priors," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 133-151, August.
    5. S. K. Sahu & T. M. F. Smith, 2006. "A Bayesian method of sample size determination with practical applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 235-253, March.
    6. Tillman, John A, 1975. "The Power of the Durbin-Watson Test," Econometrica, Econometric Society, vol. 43(5-6), pages 959-974, Sept.-Nov.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armando Turchetta & Erica E. M. Moodie & David A. Stephens & Sylvie D. Lambert, 2023. "Bayesian sample size calculations for comparing two strategies in SMART studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2489-2502, September.
    2. Fulvio De Santis & Stefania Gubbiotti, 2021. "On the predictive performance of a non-optimal action in hypothesis testing," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 689-709, June.
    3. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    4. Banerjee, A.N. & Magnus, J.R., 1996. "Testing the Sensitivity of OLS when the Variance Maxtrix is (Partially) Unknown," Other publications TiSEM e942b349-586c-4201-9228-0, Tilburg University, School of Economics and Management.
    5. Francesco Mariani & Fulvio De Santis & Stefania Gubbiotti, 2024. "The distribution of power-related random variables (and their use in clinical trials)," Statistical Papers, Springer, vol. 65(9), pages 5555-5574, December.
    6. Banerjee, A.N., 1997. "The sensitivity of estimates, inferences and forecasts of linear models," Other publications TiSEM 3238733e-f996-4fd9-95ec-0, Tilburg University, School of Economics and Management.
    7. Martellosio, Federico, 2008. "Power Properties of Invariant Tests for Spatial Autocorrelation in Linear Regression," MPRA Paper 7255, University Library of Munich, Germany.
    8. Pierpaolo Brutti & Fulvio Santis & Stefania Gubbiotti, 2014. "Bayesian-frequentist sample size determination: a game of two priors," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 133-151, August.
    9. Ali Karimnezhad & Ahmad Parsian, 2018. "Most stable sample size determination in clinical trials," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 437-454, August.
    10. Konstantinos Bourazas & Guido Consonni & Laura Deldossi, 2024. "Bayesian sample size determination for detecting heterogeneity in multi-site replication studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 697-716, September.
    11. Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
    12. A. Gafni & S. D. Walter & S. Birch & P. Sendi, 2008. "An opportunity cost approach to sample size calculation in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 17(1), pages 99-107, January.
    13. Boris G. Zaslavsky, 2013. "Bayesian Hypothesis Testing in Two-Arm Trials with Dichotomous Outcomes," Biometrics, The International Biometric Society, vol. 69(1), pages 157-163, March.
    14. Leonardo Hernán Talero-Sarmiento & Henry Lamos-Díaz & Edwin Alberto Garavito-Hernández, 2019. "Evaluación de la hipótesis de eficiencia débil y análisis de causalidad en las centrales de abastos de Colombia," Apuntes del Cenes, Universidad Pedagógica y Tecnológica de Colombia, vol. 38(67), pages 35-69, February.
    15. Thompson, Nathanael M. & Brorsen, B. Wade & DeVuyst, Eric A. & Lusk, Jayson L., 2016. "Random Sampling of Beef Cattle for Genetic Testing: Optimal Sample Size Determination," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229195, Southern Agricultural Economics Association.
    16. Leonhard Held, 2020. "A new standard for the analysis and design of replication studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 431-448, February.
    17. Henry Glick, 2011. "Sample Size and Power for Cost-Effectiveness Analysis (Part 1)," PharmacoEconomics, Springer, vol. 29(3), pages 189-198, March.
    18. C. Armero & G. García‐Donato & A. López‐Quílez, 2010. "Bayesian methods in cost–effectiveness studies: objectivity, computation and other relevant aspects," Health Economics, John Wiley & Sons, Ltd., vol. 19(6), pages 629-643, June.
    19. Wan, Alan & Zou, Guohua & Banerjee, Anurag, 2004. "The limiting power of autocorrelation tests in regression models with linear restrictions," Discussion Paper Series In Economics And Econometrics 0405, Economics Division, School of Social Sciences, University of Southampton.
    20. Kramer, Walter & Baltagi, Badi, 1996. "A general condition for an optimal limiting efficiency of OLS in the general linear regression model," Economics Letters, Elsevier, vol. 50(1), pages 13-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01462-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.