IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Efficiency of the OLS estimator in the vicinity of a spatial unit root

  • Martellosio, Federico

Previous results have indicated that the OLS estimator of the vector of regression coefficients can be nearly as efficient as the best linear unbiased estimator when the regression errors follow a spatial process with root in the vicinity of unity. Such results were derived under the assumption of a symmetric weights matrix, which simplifies the analysis considerably, but is very often not satisfied in applications. This paper provides nontrivial generalizations to the important case of nonsymmetric weights matrices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001210
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Statistics & Probability Letters.

Volume (Year): 81 (2011)
Issue (Month): 8 (August)
Pages: 1285-1291

as
in new window

Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1285-1291
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Baran, Sándor & Pap, Gyula & van Zuijlen, Martien C. A., 2004. "Asymptotic inference for a nearly unstable sequence of stationary spatial AR models," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 53-61, August.
  2. Kramer, Walter & Baltagi, Badi, 1996. "A general condition for an optimal limiting efficiency of OLS in the general linear regression model," Economics Letters, Elsevier, vol. 50(1), pages 13-17, January.
  3. Paulauskas, Vygantas, 2007. "On unit roots for spatial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 209-226, January.
  4. Roland Jeske & Seuck Song, 2003. "Relative efficiency of OLSE and COTE for seasonal autoregressive disturbances," Statistical Papers, Springer, vol. 44(3), pages 421-432, July.
  5. Martellosio, Federico, 2010. "Power Properties Of Invariant Tests For Spatial Autocorrelation In Linear Regression," Econometric Theory, Cambridge University Press, vol. 26(01), pages 152-186, February.
  6. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
  7. Lung-Fei Lee & Jihai Yu, 2009. "Spatial Nonstationarity and Spurious Regression: the Case with a Row-normalized Spatial Weights Matrix," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(3), pages 301-327.
  8. Harry H. Kelejian & Ingmar R. Prucha & Yevgeny Yuzefovich, 2006. "Estimation Problems In Models With Spatial Weighting Matrices Which Have Blocks Of Equal Elements," Journal of Regional Science, Wiley Blackwell, vol. 46(3), pages 507-515.
  9. Kleiber, Christian, 2001. "Finite sample efficiency of OLS in linear regression models with long-memory disturbances," Economics Letters, Elsevier, vol. 72(2), pages 131-136, August.
  10. Baltagi, Badi H. & Liu, Long, 2010. "Spurious spatial regression with equal weights," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1640-1642, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1285-1291. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.