IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103i484y2008p1584-1594.html
   My bibliography  Save this article

Bandwidth Selection in Nonparametric Kernel Testing

Author

Listed:
  • Gao, Jiti
  • Gijbels, Irène

Abstract

We propose a sound approach to bandwidth selection in nonparametric kernel testing. The main idea is to find an Edgeworth expansion of the asymptotic distribution of the test concerned. Due to the involvement of a kernel bandwidth in the leading term of the Edgeworth expansion, we are able to establish closed–form expressions to explicitly represent the leading terms of both the size and power functions and then determine how the bandwidth should be chosen according to certain requirements for both the size and power functions. For example, when a significance level is given, we can choose the bandwidth such that the power function is maximized while the size function is controlled by the significance level. Both asymptotic theory and methodology are established. In addition, we develop an easy implementation procedure for the practical realization of the established methodology and illustrate this on two simulated examples and a real data example.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gao, Jiti & Gijbels, Irène, 2008. "Bandwidth Selection in Nonparametric Kernel Testing," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1584-1594.
  • Handle: RePEc:bes:jnlasa:v:103:i:484:y:2008:p:1584-1594
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/016214508000000968
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. W. González-Manteiga & R. Cao, 1993. "Testing the hypothesis of a general linear model using nonparametric regression estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(1), pages 161-188, December.
    2. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jiti & Gijbels, Irene, 2005. "Bandwidth selection for nonparametric kernel testing," MPRA Paper 11982, University Library of Munich, Germany, revised Jun 2007.
    2. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    3. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    4. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    5. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    6. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    7. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    8. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    9. Yacine Aït‐Sahalia, 2002. "Telling from Discrete Data Whether the Underlying Continuous‐Time Model Is a Diffusion," Journal of Finance, American Finance Association, vol. 57(5), pages 2075-2112, October.
    10. Kusuoka, Seiichiro & Tudor, Ciprian A., 2012. "Stein’s method for invariant measures of diffusions via Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1627-1651.
    11. repec:mth:ijafr8:v:8:y:2018:i:4:p:248-286 is not listed on IDEAS
    12. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    13. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    14. Zhang, Chunming & Dette, Holger, 2004. "A power comparison between nonparametric regression tests," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 289-301, February.
    15. Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
    16. Sergio Ortobelli Lozza & Enrico Angelelli & Daniele Toninelli, 2011. "Set-Portfolio Selection with the Use of Market Stochastic Bounds," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 5-24, November.
    17. G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.
    18. Abderrahmen Aloulou & Younes Boujelbene, 2019. "Dynamic analysis of implied risk neutral density," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 12(1), pages 39-58.
    19. Mammen, Enno & Van Keilegom, Ingrid & Yu, Kyusang, 2013. "Expansion for Moments of Regression Quantiles with Applications to Nonparametric Testing," LIDAM Discussion Papers ISBA 2013027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    21. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:i:484:y:2008:p:1584-1594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.