IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1214.html
   My bibliography  Save this paper

One-Sided Testing for ARCH Effect Using Wavelets

Author

Listed:
  • Jin Lee

    (National University of Singapore)

Abstract

There has been an increasing interest in hypothesis testing with inequality restrictions. An important example in time series econometrics is hypotheses on autoregressive conditional heteroskedasticity (ARCH). We propose a one-sided test for ARCH using the wavelet method, a new analytic tool developed in the last decade or so. The test is based on a wavelet spectral density estimator at frequency zero of the square of estimated residuals from a regression model. The square of an ARCH\ process is positively correlated at all lags, resulting in a spectral mode at frequency zero. In particular, it has a spectral peak at frequency zero when there exists persistent ARCH, or when ARCH effect is small at each lag but carries over a long distributional lag. Because wavelets can effectively capture spectral peaks, we expect that the wavelet test is more powerful than the kernel counterpart when there exists persistent ARCH or when ARCH effect has a long distributional lag. This is confirmed in a simulation study, which also compares a number of important one-sided and two-sided ARCH tests.

Suggested Citation

  • Jin Lee, 2000. "One-Sided Testing for ARCH Effect Using Wavelets," Econometric Society World Congress 2000 Contributed Papers 1214, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1214
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1214.pdf
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1998. "Hypothesis testing with a restricted parameter space," Journal of Econometrics, Elsevier, vol. 84(1), pages 155-199, May.
    2. Maxwell King & Ping Wu, 1997. "Locally optimal one-sided tests for multiparameter hypotheses," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 131-156.
    3. Jensen, Mark J., 2000. "An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 361-387, March.
    4. Lee, John H. H., 1991. "A Lagrange multiplier test for GARCH models," Economics Letters, Elsevier, vol. 37(3), pages 265-271, November.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    6. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    7. Brock, W.A. & Dechert, W.D. & LeBaron, B. & Scheinkman, J.A., 1995. "A Test for Independence Based on the Correlation Dimension," Working papers 9520, Wisconsin Madison - Social Systems.
    8. Wu, P.X. & King, M.L., 1994. "One Sided Hypothesis Testing in Econometrics: A Survey," Monash Econometrics and Business Statistics Working Papers 6/94, Monash University, Department of Econometrics and Business Statistics.
    9. Bera, A.K. & Higgins, M.L., 1990. "A Test For Conditional Heterskedasticity In Time Series Midels," University of Western Ontario, The Centre for the Study of International Economic Relations Working Papers 9003, University of Western Ontario, The Centre for the Study of International Economic Relations.
    10. Lee, John H H & King, Maxwell L, 1993. "A Locally Most Mean Powerful Based Score Test for ARCH and GARCH Regression Disturbances," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 17-27, January.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    13. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    14. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
    15. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    16. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    17. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    18. Lee, John H H & King, Maxwell L, 1994. "Correction [A Locally Most Mean Powerful Based Score Test for ARCH and GARCH Regression Disturbances]," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(1), pages 139-139, January.
    19. Robert F. Engle & David F. Hendry & David Trumble, 1985. "Small-Sample Properties of ARCH Estimators and Tests," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 66-93, February.
    20. Wolak, Frank A., 1989. "Testing inequality constraints in linear econometric models," Journal of Econometrics, Elsevier, vol. 41(2), pages 205-235, June.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1214. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.