IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v17y1996i6p601-633.html
   My bibliography  Save this article

Spectral Density Estimation Via Nonlinear Wavelet Methods For Stationary Non‐Gaussian Time Series

Author

Listed:
  • Michael H. Neumann

Abstract

. In the present paper we consider nonlinear wavelet estimators of the spectral density f of a zero mean, not necessarily Gaussian, stochastic process, which is stationary in the wide sense. It is known in the case of Gaussian regression that these estimators outperform traditional linear methods if the degree of smoothness of the regression function varies considerably over the interval of interest. Such methods are based on a nonlinear treatment of empirical coefficients that arise from an orthonormal series expansion according to a wavelet basis. The main goal of this paper is to transfer these methods to spectral density estimation. This is done by showing the asymptotic normality of certain empirical coefficients based on the tapered periodogram. Using these results we can show the risk equivalence to the Gaussian case for monotone estimators based on such empirical coefficients. The resulting estimator of f keeps all interesting properties such as high spatial adaptivity that are already known for wavelet estimators in the case of Gaussian regression. It turns out that appropriately tuned versions of this estimator attain the optimal uniform rate of convergence of their L2 risk in a wide variety of Besov smoothness classes, including classes where linear estimators (kernel, spline) are not able to attain this rate. Some simulations indicate the usefulness of the new method in cases of high spatial inhomogeneity.

Suggested Citation

  • Michael H. Neumann, 1996. "Spectral Density Estimation Via Nonlinear Wavelet Methods For Stationary Non‐Gaussian Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(6), pages 601-633, November.
  • Handle: RePEc:bla:jtsera:v:17:y:1996:i:6:p:601-633
    DOI: 10.1111/j.1467-9892.1996.tb00295.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.1996.tb00295.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.1996.tb00295.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Schleicher, 2002. "An Introduction to Wavelets for Economists," Staff Working Papers 02-3, Bank of Canada.
    2. Yongmiao Hong & Jin Lee, 2000. "Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices," Econometric Society World Congress 2000 Contributed Papers 1211, Econometric Society.
    3. Bailly, Gabriel & von Sachs, Rainer, 2024. "Time-Varying Covariance Matrices Estimation by Nonlinear Wavelet Thresholding in a Log-Euclidean Riemannian Manifold," LIDAM Discussion Papers ISBA 2024004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Fryzlewicz, Piotr, 2007. "Unbalanced Haar technique for nonparametric function estimation," LSE Research Online Documents on Economics 25216, London School of Economics and Political Science, LSE Library.
    5. Butucea, Cristina & Zgheib, Rania, 2016. "Sharp minimax tests for large Toeplitz covariance matrices with repeated observations," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 164-176.
    6. Li, Yushu & Shukur, Ghazi, 2009. "Testing for Unit Root against LSTAR Model: Wavelet Improvement under GARCH Distortion," CAFO Working Papers 2009:6, Linnaeus University, Centre for Labour Market Policy Research (CAFO), School of Business and Economics.
    7. Chau, Van Vinh & von Sachs, Rainer, 2016. "Functional mixed effects wavelet estimation for spectra of replicated time series," LIDAM Discussion Papers ISBA 2016013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Dahlhaus, Rainer & Neumann, Michael H., 2001. "Locally adaptive fitting of semiparametric models to nonstationary time series," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 277-308, February.
    9. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    10. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    11. Duchesne, Pierre & Li, Linyuan & Vandermeerschen, Jill, 2010. "On testing for serial correlation of unknown form using wavelet thresholding," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2512-2531, November.
    12. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    13. Zhou, Yong & Wan, Alan T.K. & Xie, Shangyu & Wang, Xiaojing, 2010. "Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 183-201, November.
    14. Chang Chiann & Pedro Morettin, 1999. "Estimation of Time Varying Linear Systems," Statistical Inference for Stochastic Processes, Springer, vol. 2(3), pages 253-285, October.
    15. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Jin Lee, 2000. "One-Sided Testing for ARCH Effect Using Wavelets," Econometric Society World Congress 2000 Contributed Papers 1214, Econometric Society.
    17. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:17:y:1996:i:6:p:601-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.