IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0240.html
   My bibliography  Save this paper

Predictive Regressions

Author

Listed:
  • Robert F. Stambaugh

Abstract

When a rate of return is regressed on a lagged stochastic regressor, such as a dividend yield, the regression disturbance is correlated with the regressor's innovation. The OLS estimator's finite-sample properties, derived here, can depart substantially from the standard regression setting. Bayesian posterior distributions for the regression parameters are obtained under specifications that differ with respect to (i) prior beliefs about the autocorrelation of the regressor and (ii) whether the initial observation of the regressor is specified as fixed or stochastic. The posteriors differ across such specifications asset allocations in the presence of estimation risk exhibit sensitivity to those differences.

Suggested Citation

  • Robert F. Stambaugh, 1999. "Predictive Regressions," NBER Technical Working Papers 0240, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0240
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0240.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bekaert, Geert & Hodrick, Robert J. & Marshall, David A., 1997. "On biases in tests of the expectations hypothesis of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 44(3), pages 309-348, June.
    2. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    3. Elliott, Graham & Stock, James H., 1994. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
    4. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
    5. Bilson, John F O, 1981. "The "Speculative Efficiency" Hypothesis," The Journal of Business, University of Chicago Press, vol. 54(3), pages 435-451, July.
    6. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    7. Uhlig, Harald, 1994. "On Jeffreys Prior when Using the Exact Likelihood Function," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 633-644, August.
    8. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    9. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    10. Jan R. Magnus, 1986. "The Exact Moments of a Ratio of Quadratic Forms in Normal Variables," Annals of Economics and Statistics, GENES, issue 4, pages 95-109.
    11. repec:cup:etheor:v:10:y:1994:i:3-4:p:672-700 is not listed on IDEAS
    12. Kandel, Shmuel & Stambaugh, Robert F, 1996. "On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    13. Stock, James H, 1991. "Bayesian Approaches to the 'Unit Root' Problem: A Comment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 403-411, Oct.-Dec..
    14. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    15. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    16. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-1599, November.
    17. Sawa, Takamitsu, 1978. "The exact moments of the least squares estimator for the autoregressive model," Journal of Econometrics, Elsevier, vol. 8(2), pages 159-172, October.
    18. Gregory Mankiw, N. & Shapiro, Matthew D., 1986. "Do we reject too often? : Small sample properties of tests of rational expectations models," Economics Letters, Elsevier, vol. 20(2), pages 139-145.
    19. Robert J. Shiller & John Y. Campbell & Kermit L. Schoenholtz, 1983. "Forward Rates and Future Policy: Interpreting the Term Structure of Interest Rates," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 14(1), pages 173-224.
    20. Pontiff, Jeffrey & Schall, Lawrence D., 1998. "Book-to-market ratios as predictors of market returns," Journal of Financial Economics, Elsevier, vol. 49(2), pages 141-160, August.
    21. Fama, Eugene F., 1984. "Forward and spot exchange rates," Journal of Monetary Economics, Elsevier, vol. 14(3), pages 319-338, November.
    22. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    23. Fama, Eugene F., 1984. "The information in the term structure," Journal of Financial Economics, Elsevier, vol. 13(4), pages 509-528, December.
    24. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    25. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    26. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-218, March.
    27. Nankervis, J. C. & Savin, N. E., 1988. "The exact moments of the least-squares estimator for the autoregressive model corrections and extensions," Journal of Econometrics, Elsevier, vol. 37(3), pages 381-388, March.
    28. repec:cup:etheor:v:11:y:1995:i:5:p:1131-47 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    2. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    3. Ľuboš Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    4. John Y. Campbell & Luis Viceira, 2005. "The Term Structure of the Risk-Return Tradeoff," NBER Working Papers 11119, National Bureau of Economic Research, Inc.
    5. Ren, Yu & Tu, Yundong & Yi, Yanping, 2019. "Balanced predictive regressions," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 118-142.
    6. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    7. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    8. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    9. Puneet Handa, 2006. "Does Stock Return Predictability Imply Improved Asset Allocation and Performance? Evidence from the U.S. Stock Market (1954–2002)," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2423-2468, September.
    10. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    11. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    12. Campbell, John Y. & Chan, Yeung Lewis & Viceira, Luis M., 2003. "A multivariate model of strategic asset allocation," Journal of Financial Economics, Elsevier, vol. 67(1), pages 41-80, January.
    13. repec:wyi:journl:002108 is not listed on IDEAS
    14. Hirshleifer, David & Hou, Kewei & Teoh, Siew Hong, 2007. "Accruals and Aggregate Stock Market Returns," MPRA Paper 5197, University Library of Munich, Germany.
    15. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    16. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    17. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    18. Hirshleifer, David & Hou, Kewei & Teoh, Siew Hong, 2009. "Accruals, cash flows, and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 91(3), pages 389-406, March.
    19. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," NBER Working Papers 11468, National Bureau of Economic Research, Inc.
    20. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    21. Jay Shanken & Ane Tamayo, 2001. "Risk, Mispricing, and Asset Allocation: Conditioning on Dividend Yield," NBER Working Papers 8666, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0240. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.