IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0086.html
   My bibliography  Save this paper

Efficient Estimation of Linear Asset Pricing Models with Moving-Average Errors

Author

Listed:
  • Lars Peter Hansen
  • Kenneth J. Singleton

Abstract

This paper explores in depth the nature of the conditional moment restrictions implied by log-linear intertemporal capital asset pricing models (ICAPMs) and shows that the generalized instrumental variables (GMM) estimators of these models (as typically implemented in practice) are inefficient. The moment conditions in the presence of temporally aggregated consumption are derived for two log-linear ICAPMs. The first is a continuous time model in which agents maximize expected utility. In the context of this model, we show that there are important asymmetries between the implied moment conditions for infinitely and finitely-lived securities. The second model assumes that agents maximize non-expected utility, and leads to a very similar econometric relation for the return on the wealth portfolio. Then we describe the efficiency bound (greatest lower bound for the asymptotic variances) of the CNN estimators of the preference parameters in these models. In addition, we calculate the efficient CNN estimators that attain this bound. Finally, we assess the gains in precision from using this optimal CNN estimator relative to the commonly used inefficient CMN estimators.

Suggested Citation

  • Lars Peter Hansen & Kenneth J. Singleton, 1997. "Efficient Estimation of Linear Asset Pricing Models with Moving-Average Errors," NBER Technical Working Papers 0086, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0086
    Note: ME
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0086.pdf
    Download Restriction: no

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0086. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.