IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27y2011i2p347-364.html
   My bibliography  Save this article

Multivariate semi-nonparametric distributions with dynamic conditional correlations

Author

Listed:
  • Del Brio, Esther B.
  • Ñíguez, Trino-Manuel
  • Perote, Javier

Abstract

This paper generalizes the Dynamic Conditional Correlation (DCC) model of Engle (2002), incorporating a flexible non-Gaussian distribution based on Gram-Charlier expansions. The resulting semi-nonparametric-DCC (SNP-DCC) model allows estimation in two stages and deals with the negativity problem which is inherent in truncated SNP densities. We test the performance of a SNP-DCC model with respect to the (Gaussian)-DCC through an empirical application of density forecasting for portfolio returns. Our results show that the proposed multivariate model provides a better in-sample fit and forecast of the portfolio returns distribution, and thus is useful for financial risk forecasting and evaluation.

Suggested Citation

  • Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364.
  • Handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:347-364 DOI: 10.1016/j.ijforecast.2010.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207010000397
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    3. Ruiz, Esther & Pascual, Lorenzo, 2002. " Bootstrapping Financial Time Series," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 271-300, July.
    4. Adrian Pagan, 1986. "Two Stage and Related Estimators and Their Applications," Review of Economic Studies, Oxford University Press, pages 517-538.
    5. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, pages 1091-1120.
    6. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    7. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    8. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    9. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    10. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    11. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    12. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    13. Bauwens, Luc & Laurent, Sebastien, 2005. "A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
    14. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    15. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    16. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    17. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, pages 177-190.
    18. Trino-Manuel Niguez & Javier Perote, 2004. "Forecasting the density of asset returns," STICERD - Econometrics Paper Series 479, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Jaime de Melo & David Tarr, 2015. "Welfare Costs Of U.S. Quotas In Textiles, Steel And Autos," World Scientific Book Chapters,in: Modeling Developing Countries' Policies in General Equilibrium, chapter 21, pages 451-459 World Scientific Publishing Co. Pte. Ltd..
    20. Javier Perote, 2004. "The multivariate Edgeworth-Sargan density," Spanish Economic Review, Springer;Spanish Economic Association, pages 77-96.
    21. Esther B. Del Brio & Trino-Manuel Niguez & Javier Perote, 2009. "Gram-Charlier densities: a multivariate approach," Quantitative Finance, Taylor & Francis Journals, pages 855-868.
    22. Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, pages 225-239.
    23. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, pages 661-673.
    24. Eric Jondeau & Michael Rockinger, 2005. "Conditional Asset Allocation under Non-Normality: How Costly is the Mean-Variance Criterion?," FAME Research Paper Series rp132, International Center for Financial Asset Management and Engineering.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecofin:v:42:y:2017:i:c:p:53-69 is not listed on IDEAS
    2. repec:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9231-3 is not listed on IDEAS
    3. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    4. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, pages 531-537.
    5. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    6. Aslanidis, Nektarios & Casas, Isabel, 2013. "Nonparametric correlation models for portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2268-2283.
    7. Trino-Manuel Niguez & Ivan Paya & David Peel & Javier Perote, 2013. "Higher-order moments in the theory of diversification and portfolio composition," Working Papers 18297128, Lancaster University Management School, Economics Department.
    8. repec:eee:ememar:v:31:y:2017:i:c:p:96-115 is not listed on IDEAS
    9. Carlos M. Fernández-Márquez & Francisco Fatas-Villafranca & Francisco J. Vázquez, 2017. "A computational consumer-driven market model: statistical properties and the underlying industry dynamics," Computational and Mathematical Organization Theory, Springer, pages 319-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:347-364. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.