IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v6y2000i2p225-239.html
   My bibliography  Save this article

Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t

Author

Listed:
  • Ignacio Mauleon
  • Javier Perote

Abstract

The Edgeworth—Sargan density has been shown capable of capturing salient empirical regularities of financial data in some studies. The main purpose of the reported study is to compare its performance with other densities, most notably to the Student t. Both densities can account for thick tails, and asymmetry One important by product of the comparison is to test the existence of moments. The comparison of densities is carried out with daily financial observations, spanning 25 years of data from two major world stock markets. Attention is paid to the fitting of other empirical regularities, and especially to the peak, frequently found at the middle of the densities.

Suggested Citation

  • Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 225-239.
  • Handle: RePEc:taf:eurjfi:v:6:y:2000:i:2:p:225-239
    DOI: 10.1080/13518470050020851
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470050020851
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corrado, Charles J & Su, Tie, 1996. "Skewness and Kurtosis in S&P 500 Index Returns Implied by Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, Summer.
    2. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    3. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Christian M. Hafner & Wolfgang HÄrdle, 2000. "Discrete time option pricing with flexible volatility estimation," Finance and Stochastics, Springer, vol. 4(2), pages 189-207.
    6. Michel M. Dacorogna, & Ulrich A. Muller & Olivier V. Pictet & Casper De Vries,, "undated". "The Distribution of Extremal Foreign Exchange Rate Returns in Extremely Large Data Sets," Working Papers 1992-10-22, Olsen and Associates.
    7. Harvey, Campbell R. & Zhou, Guofu, 1993. "International asset pricing with alternative distributional specifications," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 107-131, June.
    8. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    9. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    10. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(01), pages 53-65, March.
    11. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    12. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    13. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    14. Ball, Clifford A. & Roma, Antonio, 1993. "A jump diffusion model for the European monetary system," Journal of International Money and Finance, Elsevier, vol. 12(5), pages 475-492, October.
    15. Pagan, Adrian R. & Schwert, G. William, 1990. "Testing for covariance stationarity in stock market data," Economics Letters, Elsevier, vol. 33(2), pages 165-170, June.
    16. Akgiray, Vedat & Booth, G Geoffrey, 1988. "Mixed Diffusion-Jump Process Modeling of Exchange Rate Movements," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 631-637, November.
    17. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    18. Sargan, J D, 1980. "Some Approximations to the Distribution of Econometric Criteria Which are Asymptotically Distributed as Chi-Squared," Econometrica, Econometric Society, vol. 48(5), pages 1107-1138, July.
    19. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    20. Prucha, Ingmar R & Kelejian, Harry H, 1984. "The Structure of Simultaneous Equation Estimators: A Generalization towards Nonnormal Disturbances," Econometrica, Econometric Society, vol. 52(3), pages 721-736, May.
    21. Fenton, Victor M & Gallant, A Ronald, 1996. "Convergence Rates of SNP Density Estimators," Econometrica, Econometric Society, vol. 64(3), pages 719-727, May.
    22. Hamilton, James D, 1991. "A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 27-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trino-Manuel Niguez & Javier Perote, 2004. "Forecasting the density of asset returns," STICERD - Econometrics Paper Series 479, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. repec:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9231-3 is not listed on IDEAS
    3. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "VaR performance during the subprime and sovereign debt crises: An application to emerging markets," Emerging Markets Review, Elsevier, vol. 20(C), pages 23-41.
    4. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    5. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2008. "Multivariate Gram-Charlier Densities," MPRA Paper 29073, University Library of Munich, Germany.
    6. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    7. Mauleon, Ignacio, 2003. "Financial densities in emerging markets: an application of the multivariate ES density," Emerging Markets Review, Elsevier, vol. 4(2), pages 197-223, June.
    8. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2017. "Measuring firm size distribution with semi-nonparametric densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 35-47.
    9. Meade, Nigel, 2010. "Oil prices -- Brownian motion or mean reversion? A study using a one year ahead density forecast criterion," Energy Economics, Elsevier, vol. 32(6), pages 1485-1498, November.
    10. repec:eee:ememar:v:31:y:2017:i:c:p:96-115 is not listed on IDEAS
    11. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    12. Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2017. "Multivariate approximations to portfolio return distribution," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 347-361, September.
    13. repec:eee:ecofin:v:42:y:2017:i:c:p:53-69 is not listed on IDEAS
    14. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    15. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364.
    16. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    17. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
    18. Lina M. Cortés & Andrés Mora-Valencia & Javier Perote, 2016. "The productivity of top researchers: a semi-nonparametric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 891-915, November.
    19. Trino-Manuel Ñíguez & Javier Perote, 2012. "Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 600-627, August.
    20. Ñíguez, Trino-Manuel & Paya, Ivan & Peel, David & Perote, Javier, 2012. "On the stability of the constant relative risk aversion (CRRA) utility under high degrees of uncertainty," Economics Letters, Elsevier, vol. 115(2), pages 244-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:6:y:2000:i:2:p:225-239. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/REJF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.