IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/479.html
   My bibliography  Save this paper

Forecasting the density of asset returns

Author

Listed:
  • Trino-Manuel Niguez
  • Javier Perote

Abstract

In this paper we introduce a transformation of the Edgeworth-Sargan series expansion of the Gaussian distribution, that we call Positive Edgeworth-Sargan (PES). The main advantage of this new density is that it is well defined for all values in the parameter space, as well as it integrates up to one. We include an illustrative empirical application to compare its performance with other distributions, including the Gaussian and the Student's t, to forecast the full density of daily exchange-rate returns by using graphical procedures. Our results show that the proposed function outperforms the other two models for density forecasting, then providing more reliable value-at-risk forecasts.

Suggested Citation

  • Trino-Manuel Niguez & Javier Perote, 2004. "Forecasting the density of asset returns," STICERD - Econometrics Paper Series 479, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:479
    as

    Download full text from publisher

    File URL: https://sticerd.lse.ac.uk/dps/em/em479.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    2. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    3. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    5. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    6. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    7. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    8. Angel León & Juan Mora, 1999. "Modelling conditional heteroskedasticity: Application to the "IBEX-35" stock-return index," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(3), pages 215-238.
    9. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
    12. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    13. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    14. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    15. Hamilton, James D, 1991. "A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 27-39, January.
    16. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
    17. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    18. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    19. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    20. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    21. Ángel León & Gonzalo Rubio & Gregorio Serna, 2004. "Autoregressive Conditional Volatility, Skewness And Kurtosis," Working Papers. Serie AD 2004-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    22. Javier Perote, 2004. "The multivariate Edgeworth-Sargan density," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(1), pages 77-96, April.
    23. Granger,Clive W. J., 1999. "Empirical Modeling in Economics," Cambridge Books, Cambridge University Press, number 9780521778251, January.
    24. Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 225-239.
    25. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    26. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2008. "Multivariate Gram-Charlier Densities," MPRA Paper 29073, University Library of Munich, Germany.
    4. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, vol. 27(2), pages 347-364, April.
    5. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    8. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
    10. Gabriela De Raaij & Burkhard Raunig, 2005. "Evaluating density forecasts from models of stock market returns," The European Journal of Finance, Taylor & Francis Journals, vol. 11(2), pages 151-166.
    11. Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013. "Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
    12. Xiao-Ming Li & Qing Xu, 2007. "Evaluating density forecasts of the model with a conditional skewed-t distribution for China's stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 18(3), pages 213-227.
    13. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    14. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    15. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
    16. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    17. Mauleon, Ignacio, 2003. "Financial densities in emerging markets: an application of the multivariate ES density," Emerging Markets Review, Elsevier, vol. 4(2), pages 197-223, June.
    18. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    19. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    20. Isao Ishida, 2005. "Scanning Multivariate Conditional Densities with Probability Integral Transforms," CIRJE F-Series CIRJE-F-369, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Keywords

    Density forecasting; Edgeworth-Sargan distribution; probability integral transformations; P-value plots; VaR;
    All these keywords.

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.