IDEAS home Printed from
   My bibliography  Save this paper

Autoregressive Conditional Volatility, Skewness And Kurtosis


  • Ángel León

    () (Universidad de Alicante)

  • Gonzalo Rubio

    (Universidad del País Vasco)

  • Gregorio Serna

    (Universidad de Castilla-La Mancha)


This paper proposes a GARCH-type model allowing for time-varying volatility, skewness and kurtosis. The model is estimated assuming a Gram-Charlier series expansion of the normal density function for the error term, which is easier to estimate than the non-central t distribution proposed by Harvey and Siddique (1999). Moreover, this approach accounts for time-varying skewness and kurtosis while the approach by Harvey and Siddique (1999) only accounts for nonnormal skewness. We apply this method to daily returns of a variety of stock indices and exchange rates. Our results indicate a significant presence of conditional skewness and kurtosis. It is also found that specifications allowing for time-varying skewness and kurtosis outperform specifications with constant third and fourth moments.

Suggested Citation

  • Ángel León & Gonzalo Rubio & Gregorio Serna, 2004. "Autoregressive Conditional Volatility, Skewness And Kurtosis," Working Papers. Serie AD 2004-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  • Handle: RePEc:ivi:wpasad:2004-13

    Download full text from publisher

    File URL:
    File Function: Fisrt version / Primera version, 2004
    Download Restriction: no

    References listed on IDEAS

    1. Jondeau, Eric & Rockinger, Michael, 2001. "Gram-Charlier densities," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1457-1483, October.
    2. Corrado, Charles J & Su, Tie, 1996. "Skewness and Kurtosis in S&P 500 Index Returns Implied by Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, Summer.
    3. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    4. ROCKINGER, Michael & JONDEAU, Eric, 2000. "Conditional Volatility, Skewness, and Kurtosis : Existence and Persistence," Les Cahiers de Recherche 710, HEC Paris.
    5. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 211-239, June.
    6. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    7. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31 World Scientific Publishing Co. Pte. Ltd..
    8. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    9. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    12. Amin, Kaushik I & Ng, Victor K, 1997. "Inferring Future Volatility from the Information in Implied Volatility in Eurodollar Options: A New Approach," Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 333-367.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Trino-Manuel Niguez & Javier Perote, 2004. "Forecasting the density of asset returns," STICERD - Econometrics Paper Series 479, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Krishnakumar, Jaya & Kabili, Andi & Roko, Ilir, 2012. "Estimation of SEM with GARCH errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3153-3181.

    More about this item


    Conditional volatility; skewness and kurtosis; Gram-Charlier series expansion; Stock indices.;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ivi:wpasad:2004-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Departamento de Edición). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.