IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i11p3153-3181.html
   My bibliography  Save this article

Estimation of SEM with GARCH errors

Author

Listed:
  • Krishnakumar, Jaya
  • Kabili, Andi
  • Roko, Ilir

Abstract

The interdependence of financial markets combined with their volatility make the multivariate GARCH model a suitable econometric framework for analysing their behaviour. However, the non-availability of analytical derivatives in a general context and the computational heaviness resulting from a numerical calculation still represent a major hurdle for the use of such models in practical applications. In a general simultaneous equation model with multivariate GARCH errors, analytical expressions of the score, the Hessian and the information matrices are derived and used for implementing QML and GMM estimation procedures. The asymptotic variances of these estimators are obtained using the same expressions and the asymptotic superiority of GMM over QML is shown in the non-normal case. A simulation study comparing different gradient algorithms for ML as well as the finite sample behaviour of ML and GMM shows that using analytical results instead of numerical approximations in the optimisation procedure yields better results and reiterates the superiority of GMM over QML in finite samples under non-normality.

Suggested Citation

  • Krishnakumar, Jaya & Kabili, Andi & Roko, Ilir, 2012. "Estimation of SEM with GARCH errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3153-3181.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3153-3181
    DOI: 10.1016/j.csda.2012.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001326
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    3. Gita Persand & Chris Brooks & Simon P. Burke, 2003. "Multivariate GARCH models: software choice and estimation issues," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 725-734.
    4. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    5. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
    6. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    7. Baltagi, Badi H., 1981. "Simultaneous equations with error components," Journal of Econometrics, Elsevier, vol. 17(2), pages 189-200, November.
    8. Bauwens, L. & Hafner, C.M. & Rombouts, J.V.K., 2007. "Multivariate mixed normal conditional heteroskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3551-3566, April.
    9. Lucchetti, Riccardo, 2002. "Analytical Score for Multivariate GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 19(2), pages 133-143, April.
    10. Richard Harmon, 1988. "The simultaneous equations model with generalized autoregressive conditional heteroskedasticity: the SEM-GRACH model," International Finance Discussion Papers 322, Board of Governors of the Federal Reserve System (U.S.).
    11. Turkington, Darrell A., 1998. "Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances," Journal of Econometrics, Elsevier, vol. 85(1), pages 51-74, July.
    12. Prucha, Ingmar R, 1985. "Maximum Likelihood and Instrumental Variable Estimation in Simultaneous Equation Systems with Error Components," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(2), pages 491-506, June.
    13. Fiorentini, G. & Sentana, E. & Calzolari, G., 2000. "The Score of Condionally Heteroskedastic Dynamic Regression Models with Student T Innovations, and an LM Test for Multivariate Normality," Papers 0007, Centro de Estudios Monetarios Y Financieros-.
    14. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, May.
    15. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    16. Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2008. "Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR," Working Paper Series 957, European Central Bank.
    17. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    18. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009. "Asymmetric multivariate normal mixture GARCH," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
    19. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    20. Fair, Ray C, 1970. "The Estimation of Simultaneous Equation Models with Lagged Endogenous Variables and First Order Serially Correlated Errors," Econometrica, Econometric Society, vol. 38(3), pages 507-516, May.
    21. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    22. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    23. Engle, Robert F. & Granger, C. W. J. & Kraft, Dennis, 1984. "Combining competing forecasts of inflation using a bivariate arch model," Journal of Economic Dynamics and Control, Elsevier, vol. 8(2), pages 151-165, November.
    24. Christian Hafner & Helmut Herwartz, 2008. "Analytical quasi maximum likelihood inference in multivariate volatility models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(2), pages 219-239, March.
    25. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    26. Krishnakumar, J. & Ronchetti, E., 1997. "Robust estimators for simultaneous equations models," Journal of Econometrics, Elsevier, vol. 78(2), pages 295-314, June.
    27. Ángel León & Gonzalo Rubio & Gregorio Serna, 2004. "Autoregressive Conditional Volatility, Skewness And Kurtosis," Working Papers. Serie AD 2004-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    28. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3153-3181. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.