IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v9y2009i7p855-868.html
   My bibliography  Save this article

Gram-Charlier densities: a multivariate approach

Author

Listed:
  • Esther B. Del Brio
  • Trino-Manuel Niguez
  • Javier Perote

Abstract

This paper introduces a new family of multivariate distributions based on Gram-Charlier and Edgeworth expansions. This family encompasses many of the univariate semi-non-parametric densities proposed in financial econometrics as marginal of its different formulations. Within this family, we focus on the analysis of the specifications that guarantee positivity to obtain well-defined multivariate semi-non-parametric densities. We compare two different multivariate distributions of the family with the multivariate Edgeworth-Sargan, Normal, Student's t and skewed Student's t in an in- and out-of-sample framework for financial returns data. Our results show that the proposed specifications provide a reasonably good performance, and would therefore be of interest for applications involving the modelling and forecasting of heavy-tailed distributions.

Suggested Citation

  • Esther B. Del Brio & Trino-Manuel Niguez & Javier Perote, 2009. "Gram-Charlier densities: a multivariate approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 855-868.
  • Handle: RePEc:taf:quantf:v:9:y:2009:i:7:p:855-868 DOI: 10.1080/14697680902773611
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680902773611
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    2. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., pages 641-663.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Hafner, Christian M. & Rombouts, Jeroen V.K., 2007. "Semiparametric Multivariate Volatility Models," Econometric Theory, Cambridge University Press, pages 251-280.
    5. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    6. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    7. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    8. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, pages 225-245.
    9. de Goeij, P. C. & Marquering, W., 2004. "Modeling the conditional covariance between stock and bond returns : A multivariate GARCH approach," Other publications TiSEM 94fe5ada-715a-4339-b94c-f, Tilburg University, School of Economics and Management.
    10. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    11. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    12. Giovanni Barone Adesi & Patrick Gagliardini & Giovanni Urga, 2004. "Testing Asset Pricing Models With Coskewness," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 474-485, October.
    13. Jianqing Fan & Juan Gu, 2003. "Semiparametric estimation of Value at Risk," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 261-290, December.
    14. Peter de Goeij, 2004. "Modeling the Conditional Covariance Between Stock and Bond Returns: A Multivariate GARCH Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 531-564.
    15. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., pages 641-663.
    16. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, pages 531-554.
    17. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ecofin:v:42:y:2017:i:c:p:53-69 is not listed on IDEAS
    2. Alexandros Gabrielsen & Axel Kirchner & Zhuoshi Liu & Paolo Zagaglia, 2015. "Forecasting Value-At-Risk With Time-Varying Variance, Skewness And Kurtosis In An Exponential Weighted Moving Average Framework," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., pages 1-29.
    3. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2011. "Multivariate semi-nonparametric distributions with dynamic conditional correlations," International Journal of Forecasting, Elsevier, pages 347-364.
    4. repec:spr:comaot:v:23:y:2017:i:3:d:10.1007_s10588-016-9231-3 is not listed on IDEAS
    5. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    6. Withers, Christopher S. & Nadarajah, Saralees, 2014. "The dual multivariate Charlier and Edgeworth expansions," Statistics & Probability Letters, Elsevier, pages 76-85.
    7. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
    8. Juan Arismendi, 2014. "A Multi-Asset Option Approximation for General Stochastic Processes," ICMA Centre Discussion Papers in Finance icma-dp2014-03, Henley Business School, Reading University.
    9. repec:eee:ememar:v:31:y:2017:i:c:p:96-115 is not listed on IDEAS
    10. Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2017. "Multivariate approximations to portfolio return distribution," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 347-361, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:9:y:2009:i:7:p:855-868. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.