IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v32y2010i6p1485-1498.html
   My bibliography  Save this article

Oil prices -- Brownian motion or mean reversion? A study using a one year ahead density forecast criterion

Author

Listed:
  • Meade, Nigel

Abstract

For oil related investment appraisal, an accurate description of the evolving uncertainty in the oil price is essential. For example, when using real option theory to value an investment, a density function for the future price of oil is central to the option valuation. The literature on oil pricing offers two views. The arbitrage pricing theory literature for oil suggests geometric Brownian motion and mean reversion models. Empirically driven literature suggests ARMA-GARCH models. In addition to reflecting the volatility of the market, the density function of future prices should also incorporate the uncertainty due to price jumps, a common occurrence in the oil market. In this study, the accuracy of density forecasts for up to a year ahead is the major criterion for a comparison of a range of models of oil price behaviour, both those proposed in the literature and following from data analysis. The Kullbach Leibler information criterion is used to measure the accuracy of density forecasts. Using two crude oil price series, Brent and West Texas Intermediate (WTI) representing the US market, we demonstrate that accurate density forecasts are achievable for up to nearly two years ahead using a mixture of two Gaussians innovation processes with GARCH and no mean reversion.

Suggested Citation

  • Meade, Nigel, 2010. "Oil prices -- Brownian motion or mean reversion? A study using a one year ahead density forecast criterion," Energy Economics, Elsevier, vol. 32(6), pages 1485-1498, November.
  • Handle: RePEc:eee:eneeco:v:32:y:2010:i:6:p:1485-1498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(10)00119-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," Review of Economic Studies, Oxford University Press, vol. 59(1), pages 1-23.
    2. Ye, Michael & Zyren, John & Shore, Joanne, 2006. "Forecasting short-run crude oil price using high- and low-inventory variables," Energy Policy, Elsevier, vol. 34(17), pages 2736-2743, November.
    3. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
    4. Kon, Stanley J, 1984. " Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    7. Egorov, Alexei V. & Hong, Yongmiao & Li, Haitao, 2006. "Validating forecasts of the joint probability density of bond yields: Can affine models beat random walk?," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 255-284.
    8. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    9. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    10. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    11. Jin-Chuan Duan & Peter Ritchken & Zhiqiang Sun, 2006. "Approximating Garch-Jump Models, Jump-Diffusion Processes, And Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 21-52.
    12. Manmohan S. Kumar, 1992. "The Forecasting Accuracy of Crude Oil Futures Prices," IMF Staff Papers, Palgrave Macmillan, vol. 39(2), pages 432-461, June.
    13. Robert S. Pindyck, 2004. "Volatility and commodity price dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1029-1047, November.
    14. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
    15. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    16. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    17. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    18. Cortazar, Gonzalo & Schwartz, Eduardo S., 1998. "Monte Carlo evaluation model of an undeveloped oil field," Journal of Energy Finance & Development, Elsevier, vol. 3(1), pages 73-84.
    19. Akgiray, Vedat & Booth, G Geoffrey, 1988. "The Stable-Law Model of Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 51-57, January.
    20. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    21. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(01), pages 91-115, March.
    22. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
    23. Tucker, Alan L & Pond, Lallon, 1988. "The Probability Distribution of Foreign Exchange Price Changes: Tests of Candidate Processes," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 638-647, November.
    24. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    25. Gonzalo Cortazar & Lorenzo Naranjo, 2006. "An N‐factor Gaussian model of oil futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 243-268, March.
    26. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(03), pages 428-457, December.
    27. Tina Hviid Rydberg, 1999. "Generalized Hyperbolic Diffusion Processes with Applications in Finance," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 183-201.
    28. Paul Stevens, 2005. "Oil Markets," Oxford Review of Economic Policy, Oxford University Press, vol. 21(1), pages 19-42, Spring.
    29. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    30. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    31. Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, issue Mar, pages 2-13.
    32. Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 225-239.
    33. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
    34. Clements, Michael P & Hendry, David F, 1996. "Intercept Corrections and Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 475-494, Sept.-Oct.
    35. Panas, Epaminondas & Ninni, Vassilia, 2000. "Are oil markets chaotic? A non-linear dynamic analysis," Energy Economics, Elsevier, vol. 22(5), pages 549-568, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Xiaoye & Xiaowen Lin, Sharon & Tamvakis, Michael, 2012. "Volatility transmission and volatility impulse response functions in crude oil markets," Energy Economics, Elsevier, vol. 34(6), pages 2125-2134.
    2. Kovacevic, Raimund M. & Paraschiv, Florentina, 2012. "Medium-term Planning for Thermal Electricity Production," Working Papers on Finance 1220, University of St. Gallen, School of Finance.
    3. Karl Inderfurth & Peter Kelle & Rainer Kleber, 2014. "The Effect of Material Price and Product Demand Correlations on Combined Sourcing and Inventory Management," FEMM Working Papers 140013, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    4. Chen, Ruoran & Deng, Tianhu & Huang, Simin & Qin, Ruwen, 2015. "Optimal crude oil procurement under fluctuating price in an oil refinery," European Journal of Operational Research, Elsevier, vol. 245(2), pages 438-445.
    5. Calili, Rodrigo F. & Souza, Reinaldo C. & Galli, Alain & Armstrong, Margaret & Marcato, André Luis M., 2014. "Estimating the cost savings and avoided CO2 emissions in Brazil by implementing energy efficient policies," Energy Policy, Elsevier, vol. 67(C), pages 4-15.
    6. Meade, Nigel & Islam, Towhidul, 2015. "Modelling European usage of renewable energy technologies for electricity generation," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 497-509.
    7. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    8. Work, J. & Qiu, F. & Luckert, M.K., 2016. "Examining hardwood pulp and ethanol prices for improved poplar plantations in Canada," Forest Policy and Economics, Elsevier, vol. 70(C), pages 9-15.
    9. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    10. Julio Alonso Cifuentes & Andrés Arcila Vásquez, 2012. "Un modelo de predicciones diarias para contratos de futuros de azúcar," REVISTA ECONOMÍA & REGIÓN, UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR, vol. 6(2), pages 33-51, December.
    11. repec:eee:pacfin:v:45:y:2017:i:c:p:186-210 is not listed on IDEAS
    12. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    13. repec:spr:cejnor:v:26:y:2018:i:1:d:10.1007_s10100-017-0475-x is not listed on IDEAS
    14. Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.
    15. Hahn, Warren J. & DiLellio, James A. & Dyer, James S., 2014. "What do market-calibrated stochastic processes indicate about the long-term price of crude oil?," Energy Economics, Elsevier, vol. 44(C), pages 212-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:6:p:1485-1498. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.