IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i5p589-603.html

Financial density forecasts: A comprehensive comparison of risk‐neutral and historical schemes

Author

Listed:
  • Ricardo Crisóstomo
  • Lorena Couso

Abstract

We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies—small samples, limited models, and nonholistic validations—by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new composite indicator, the integrated forecast score, we show that risk‐neutral densities outperform historical‐based predictions in terms of information content. We find that the variance gamma model generates the highest out‐of‐sample likelihood of observed prices and the lowest predictive errors, whereas the GARCH‐based GJR‐FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model, or the nonparametric Breeden–Litzenberger formula yield biased predictions and are rejected in statistical tests.

Suggested Citation

  • Ricardo Crisóstomo & Lorena Couso, 2018. "Financial density forecasts: A comprehensive comparison of risk‐neutral and historical schemes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 589-603, August.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:5:p:589-603
    DOI: 10.1002/for.2521
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2521
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
    2. Pedro Serrano & Antoni Vaello‐Sebastià & M. Magdalena Vich Llompart, 2024. "International evidence of the forecasting ability of option‐implied distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1447-1464, August.
    3. Zdeněk Zmeškal & Dana Dluhošová & Karolina Lisztwanová & Antonín Pončík & Iveta Ratmanová, 2023. "Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy," Forecasting, MDPI, vol. 5(2), pages 1-19, May.
    4. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    5. Ricardo Crisostomo, 2022. "Measuring Transition Risk in Investment Funds," Papers 2210.15329, arXiv.org, revised Dec 2022.
    6. Jaqueline Terra Moura Marins, 2024. "Predictability of Exchange Rate Density Forecasts for Emerging Economies in the Short Run," Working Papers Series 588, Central Bank of Brazil, Research Department.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:5:p:589-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.