IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v57y2002i1p43-52.html
   My bibliography  Save this article

An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution

Author

Listed:
  • Karlis, Dimitris

Abstract

The Normal-Inverse Gaussian distribution arises as a Normal variance-mean mixture with an Inverse Gaussian mixing distribution. This article deals with Maximum Likelihood estimation of the parameters of the Normal-Inverse Gaussian distribution. Due to the complexity of the likelihood, direct maximization is difficult. An EM type algorithm is provided for the Maximum Likelihood estimation of the Normal-Inverse Gaussian distribution. This algorithm overcomes numerical difficulties occurring when standard numerical techniques are used. An application to a data set concerning the general index of the Athens Stock Exchange is given. Some operating characteristics of the algorithm are discussed.

Suggested Citation

  • Karlis, Dimitris, 2002. "An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 43-52, March.
  • Handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:43-52
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00040-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-198, April.
    2. Ole E. Barndorff-Nielsen & Karsten Prause, 2001. "Apparent scaling," Finance and Stochastics, Springer, vol. 5(1), pages 103-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    2. Caporin, Massimiliano & Pelizzon, Loriana & Ravazzolo, Francesco & Rigobon, Roberto, 2018. "Measuring sovereign contagion in Europe," Journal of Financial Stability, Elsevier, vol. 34(C), pages 150-181.
    3. Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
    4. Sofia Anyfantaki & Antonis Demos, 2016. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 293-310, February.
    5. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    6. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    7. Caporin, Massimiliano & Gupta, Rangan & Ravazzolo, Francesco, 2021. "Contagion between real estate and financial markets: A Bayesian quantile-on-quantile approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    8. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
    9. Oscar Andrés Espinosa Acuna & Paola Andrea Vaca González, 2017. "Ajuste de modelos garch clásico y bayesiano con innovaciones t—student para el índice COLCAP," Revista de Economía del Caribe 17147, Universidad del Norte.
    10. Norberto Rodríguez, 2000. "Bayesian Model Estimation and Selection for the Weekly Colombian Exchange Rate," Borradores de Economia 2060, Banco de la Republica.
    11. Antonis Papapantoleon, 2008. "An introduction to L\'{e}vy processes with applications in finance," Papers 0804.0482, arXiv.org, revised Nov 2008.
    12. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    13. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    14. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    15. Chow, William W. & Fung, Michael K., 2008. "Volatility of stock price as predicted by patent data: An MGARCH perspective," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 64-79, January.
    16. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    17. Qiang Xia & Jiazhu Pan & Zhiqiang Zhang & Jinshan Liu, 2010. "A Bayesian nonlinearity test for threshold moving average models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 329-336, September.
    18. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    19. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    20. Cathy W. S. Chen & Richard H. Gerlach & Ann M. H. Lin, 2010. "Falling and explosive, dormant, and rising markets via multiple‐regime financial time series models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(1), pages 28-49, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:43-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.