IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v40y2015icp282-297.html
   My bibliography  Save this article

ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails

Author

Listed:
  • Paolella, Marc S.
  • Polak, Paweł

Abstract

It is well-known in empirical finance that virtually all asset returns, whether monthly, daily, or intraday, are heavy-tailed and, particularly for stock returns, are mildly but often significantly negatively skewed. However, the tail indices, or maximally existing moments of the returns, can differ markedly across assets. To accommodate these stylized facts when modeling the joint distribution of asset returns, an asymmetric extension of the meta-elliptical t distribution is proposed. While the likelihood is tractable, for high dimensions it will be impractical to use for estimation. To address this, a fast, two-step estimation procedure is developed, based on a saddlepoint approximation to the noncentral Student's t distribution. The model is extended to support a CCC-(I)GARCH structure and demonstrated by modeling and forecasting the return series comprising the DJIA. The techniques of shrinkage, time-varying tail dependence, and weighted likelihood are employed to further enhance the forecasting performance of the model with no added computational burden.

Suggested Citation

  • Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
  • Handle: RePEc:eee:reveco:v:40:y:2015:i:c:p:282-297
    DOI: 10.1016/j.iref.2015.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056015000477
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Diamantopoulos & I. Vrontos, 2010. "A Student-t Full Factor Multivariate GARCH Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 63-83, January.
    2. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    3. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    4. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    5. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 130-168.
    8. Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
    9. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    10. King, M.L. & Giles, D.E.A., 1984. "Autocorrelation pre-testing in the linear model: Estimation, testing and prediction," Journal of Econometrics, Elsevier, vol. 25(1-2), pages 35-48.
    11. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    12. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    13. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    14. Brooks, Chris & Burke, Simon P. & Persand, Gita, 2001. "Benchmarks and the accuracy of GARCH model estimation," International Journal of Forecasting, Elsevier, vol. 17(1), pages 45-56.
    15. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    16. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, Open Access Journal, vol. 1(1), pages 1-12, June.
    17. Tomoaki Nakatani & Timo Terasvirta, 2009. "Testing for volatility interactions in the Constant Conditional Correlation GARCH model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 147-163, March.
    18. Shaw, W.T. & Lee, K.T.A., 2008. "Bivariate Student t distributions with variable marginal degrees of freedom and independence," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1276-1287, July.
    19. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, August.
    20. Guglielmo Maria Caporale & Nikitas Pittis & Nicola Spagnolo, 2003. "IGARCH models and structural breaks," Applied Economics Letters, Taylor & Francis Journals, vol. 10(12), pages 765-768.
    21. Tse, Y. K., 2000. "A test for constant correlations in a multivariate GARCH model," Journal of Econometrics, Elsevier, vol. 98(1), pages 107-127, September.
    22. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    23. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
    24. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    25. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    26. Peter Winker & Dietmar Maringer, 2009. "The convergence of estimators based on heuristics: theory and application to a GARCH model," Computational Statistics, Springer, vol. 24(3), pages 533-550, August.
    27. Broda, Simon & Paolella, Marc S., 2007. "Saddlepoint approximations for the doubly noncentral t distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2907-2918, March.
    28. Liu, Yan & Luger, Richard, 2009. "Efficient estimation of copula-GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2284-2297, April.
    29. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
    30. Hafner, Christian M. & Reznikova, Olga, 2010. "Efficient estimation of a semiparametric dynamic copula model," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2609-2627, November.
    31. Kennedy, Peter & Simons, Daniel, 1991. "Fighting the teflon factor : Comparing classical and Bayesian estimators for autocorrelated errors," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 15-27.
    32. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    33. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    34. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    35. Monica Billio & Massimiliano Caporin & Michele Gobbo, 2006. "Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 2(2), pages 123-130, March.
    36. Hu Liang & Shin Yongcheol, 2008. "Optimal Test for Markov Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-27, September.
    37. Wang, Kehluh & Chen, Yi-Hsuan & Huang, Szu-Wei, 2011. "The dynamic dependence between the Chinese market and other international stock markets: A time-varying copula approach," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 654-664, October.
    38. Bera, Anil K. & Kim, Sangwhan, 2002. "Testing constancy of correlation and other specifications of the BGARCH model with an application to international equity returns," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 171-195, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hammoudeh, Shawkat & McAleer, Michael, 2015. "Advances in financial risk management and economic policy uncertainty: An overview," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 1-7.
    2. repec:eee:ecosta:v:3:y:2017:i:c:p:91-111 is not listed on IDEAS

    More about this item

    Keywords

    Density forecasting; GARCH; Saddlepoint approximation; Shrinkage estimation; Weighted likelihood;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:40:y:2015:i:c:p:282-297. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.