IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1304.html

Time-Varying Mixture GARCH Models and Asymmetric Volatility

Author

Listed:
  • Markus Haas

    (University of Kiel)

  • Jochen Krause

    (University of Zürich)

  • Marc S. Paolella

    (University of Zurich, Ecole Polytechnique Fédérale de Lausanne, and Swiss Finance Institute)

  • Sven C. Steude

    (University of Zürich)

Abstract

The class of mixed normal conditional heteroskedastic (MixN-GARCH) models, which couples a mixed normal distributional structure with GARCH-type dynamics, has been shown to offer a plausible decomposition of the contributions to volatility, as well as excellent out-of-sample forecasting performance, for financial asset returns. In this paper, we generalize the MixN-GARCH model by relaxing the assumption of constant mixing weights. Two different specifications with time-varying mixing weights are considered. In particular, by relating current weights to past returns and realized (component-wise) likelihood values, an empirically reasonable representation of Engle and Ng's (1993) news impact curve with an asymmetric impact of unexpected return shocks on future volatility is obtained. An empirical out-of-sample study confirms the usefulness of the new approach and gives evidence that the leverage effect in financial returns data is closely connected, in a non-linear fashion, to the time-varying interplay of mixture components representing, for example, various groups of market participants.

Suggested Citation

  • Markus Haas & Jochen Krause & Marc S. Paolella & Sven C. Steude, 2013. "Time-Varying Mixture GARCH Models and Asymmetric Volatility," Swiss Finance Institute Research Paper Series 13-04, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1304
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=2229740
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar V. De la Torre-Torres & Francisco Venegas-Martínez & Mᵃ Isabel Martínez-Torre-Enciso, 2021. "Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models," Mathematics, MDPI, vol. 9(2), pages 1-22, January.
    2. Su, Jung-Bin, 2014. "Empirical analysis of long memory, leverage, and distribution effects for stock market risk estimates," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 1-39.
    3. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    4. Jochen Krause & Marc S. Paolella, 2014. "A Fast, Accurate Method for Value-at-Risk and Expected Shortfall," Econometrics, MDPI, vol. 2(2), pages 1-25, June.
    5. Liu, Yanxin & Li, Johnny Siu-Hang & Ng, Andrew Cheuk-Yin, 2015. "Option pricing under GARCH models with Hansen's skewed-t distributed innovations," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 108-125.
    6. Chia-Lin Chang & Allen, David & McAleer, Michael, 2013. "Recent developments in financial economics and econometrics: An overview," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 217-226.
    7. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    8. N. Alemohammad & S. Rezakhah & S. H. Alizadeh, 2020. "Markov switching asymmetric GARCH model: stability and forecasting," Statistical Papers, Springer, vol. 61(3), pages 1309-1333, June.
    9. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    10. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.
    11. Rytis Kazakeviv{c}ius & Aleksejus Kononovicius, 2023. "Anomalous diffusion and long-range memory in the scaled voter model," Papers 2301.08088, arXiv.org, revised Feb 2023.
    12. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.