IDEAS home Printed from https://ideas.repec.org/a/cpn/umkdem/v8y2008p129-138.html
   My bibliography  Save this article

Bayesian Analysis of Polish Inflation Rates Using RCA and GLL Models

Author

Listed:
  • Jacek Kwiatkowski

Abstract

No abstract is available for this item.

Suggested Citation

  • Jacek Kwiatkowski, 2008. "Bayesian Analysis of Polish Inflation Rates Using RCA and GLL Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 8, pages 129-138.
  • Handle: RePEc:cpn:umkdem:v:8:y:2008:p:129-138
    as

    Download full text from publisher

    File URL: http://www.dem.umk.pl/dem/archiwa/v8/16_Kwiatkowski.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    2. Charles S. Bos & Ronald J. Mahieu & Herman K. Van Dijk, 2000. "Daily exchange rate behaviour and hedging of currency risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 671-696.
    3. Bera, Anil K & Higgins, Matthew L & Lee, Sangkyu, 1992. "Interaction between Autocorrelation and Conditional Heteroscedasticity: A Random-Coefficient Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 133-142, April.
    4. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    6. Gary Koop & Simon M. Potter, 2001. "Are apparent findings of nonlinearity due to structural instability in economic time series?," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-38.
    7. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Kwiatkowski, 2010. "Unobserved Component Model for Forecasting Polish Inflation," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 10, pages 121-129.
    2. Koop, Gary & Potter, Simon, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Journal of Econometrics, Elsevier, vol. 159(1), pages 134-150, November.
    3. Charles S. Bos & Siem Jan Koopman, 2010. "Models with Time-varying Mean and Variance: A Robust Analysis of U.S. Industrial Production," Tinbergen Institute Discussion Papers 10-017/4, Tinbergen Institute.
    4. repec:hal:journl:peer-00732535 is not listed on IDEAS
    5. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    6. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    7. Francesco Bianchi & Giovanni Nicolo & Dongho Song, 2023. "Inflation and Real Activity over the Business Cycle," Finance and Economics Discussion Series 2023-038, Board of Governors of the Federal Reserve System (U.S.).
    8. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    9. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    10. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    11. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    12. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    13. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    14. McNeil, James, 2023. "Monetary policy and the term structure of inflation expectations with information frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    15. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    16. S. Borağan Aruoba, 2020. "Term Structures of Inflation Expectations and Real Interest Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 542-553, July.
    17. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    18. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    19. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    20. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    21. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpn:umkdem:v:8:y:2008:p:129-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Miroslawa Buczynska (email available below). General contact details of provider: http://www.wydawnictwoumk.pl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.