IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/120.html
   My bibliography  Save this paper

Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC

Author

Listed:
  • Rob L. Hyndman
  • Xibin Zhang
  • Maxwell L. King,

Abstract

Kernel density estimation for multivariate data is an important technique that has a wide range of applications in econometrics and finance. However, it has received significantly less attention than its univariate counterpart. The lower level of interest in multivariate kernel density estimation is mainly due to the increased difficulty in deriving an optimal data-driven bandwidth as the dimension of data increases. We provide Markov chain Monte Carlo (MCMC) algorithms for estimating optimal bandwidth matrices for multivariate kernel density estimation. Our approach is based on treating the elements of the bandwidth matrix as parameters whose posterior density can be obtained through the likelihood cross-validation criterion. Numerical studies for bivariate data show that the MCMC algorithm generally performs better than the plug-in algorithm under the Kullback-Leibler information criterion, and is as good as the plug-in algorithm under the mean integrated squared errors (MISE) criterion. Numerical studies for 5 dimensional data show that our algorithm is superior to the normal reference rule. Our MCMC algorithm is the first data-driven bandwidth selector for kernel density estimation with more than two variables, and the sampling algorithm involves no increased difficulty as the dimension of data increase

Suggested Citation

  • Rob L. Hyndman & Xibin Zhang & Maxwell L. King,, 2004. "Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC," Econometric Society 2004 Australasian Meetings 120, Econometric Society.
  • Handle: RePEc:ecm:ausm04:120
    as

    Download full text from publisher

    File URL: http://repec.org/esAUSM04/up.1603.1077410300.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    3. Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
    4. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    5. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    6. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth L. Sørensen & Rune Vejlin, 2014. "Return To Experience And Initial Wage Level: Do Low Wage Workers Catch Up?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 984-1006, September.
    2. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    3. Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
    4. H. Poulos, 2010. "Spatially explicit mapping of hurricane risk in New England, USA using ArcGIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 1015-1023, September.

    More about this item

    Keywords

    Bandwidth matrices; Cross-validation; Kullback-Leibler information; mean integrated squared errors; Sampling algorithms.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:120. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.