IDEAS home Printed from
   My bibliography  Save this paper

A New Procedure For Multiple Testing Of Econometric Models


  • Maxwell L. King


  • Xibin Zhang


  • Muhammad Akram


A significant role for hypothesis testing in econometrics involves diagnostic checking. When checking the adequacy of a chosen model, researchers typically employ a range of diagnostic tests, each of which is designed to detect a particular form of model inadequacy. A major problem is how best to control the overall probability of rejecting the model when it is true and multiple test statistics are used. This paper presents a new multiple testing procedure, which involves checking whether the calculated values of the diagnostic statistics are consistent with the postulated model being true. This is done through a combination of bootstrapping to obtain a multivariate kernel density estimator of the joint density of the test statistics under the null hypothesis and Monte Carlo simulations to obtain a p value using this kernel density. We prove that under some regularity conditions, the estimated p value of our test procedure is a consistent estimate of the true p value. The proposed testing procedure is applied to tests for autocorrelation in an observed time series, for normality, and for model misspecification through the information matrix. We find that our testing procedure has correct or nearly correct sizes and good powers, particular for more complicated testing problems. We believe it is the first good method for calculating the overall p value for a vector of test statistics based on simulation.

Suggested Citation

  • Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2011-7

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    2. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Julia Polak & Maxwell L. King & Xibin Zhang, 2014. "A Model Validation Procedure," Monash Econometrics and Business Statistics Working Papers 21/14, Monash University, Department of Econometrics and Business Statistics.
    2. Jin Seo Cho & Halbert White, 2014. "Testing the Equality of Two Positive-Definite Matrices with Application to Information Matrix Testing," Working papers 2014rwp-67, Yonsei University, Yonsei Economics Research Institute.

    More about this item


    Bootstrapping; consistency; information matrix test; Markov chain Monte Carlo simulation; multivariate kernel density; normality; serial correlation; test vector;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2011-7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.