IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Modeling Jump and Continuous Components in the Volatility of Oil Futures

Listed author(s):
  • Tseng Tseng-Chan

    ()

    (Nan Kai University of Technology)

  • Chung Huimin

    ()

    (National Chiao Tung University)

  • Huang Chin-Sheng

    ()

    (National Yunlin University of Science and Technology)

Registered author(s):

    In this study, we use the 'heterogeneous autoregressive' (HAR) model and replace all squared returns with a squared range to estimate realized range-based volatility (RRV) forecasts for oil futures prices. Our findings demonstrate that the HAR-RRV models, involving volatility measures with a realized range-based estimator, successfully capture the long-term memory behavior of volatility in oil futures contracts. We find that realized range-based bi-power variation (RBV), which is also immune to jumps, is a better regressor for future volatility prediction, significantly outperforming the AR model. Similar to the findings for financial markets, we also find that the jump components of RRV have little predictive power for oil futures contracts.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: https://www.degruyter.com/view/j/snde.2009.13.3/snde.2009.13.3.1671/snde.2009.13.3.1671.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by De Gruyter in its journal Studies in Nonlinear Dynamics & Econometrics.

    Volume (Year): 13 (2009)
    Issue (Month): 3 (May)
    Pages: 1-30

    as
    in new window

    Handle: RePEc:bpj:sndecm:v:13:y:2009:i:3:n:5
    Contact details of provider: Web page: https://www.degruyter.com

    Order Information: Web: https://www.degruyter.com/view/j/snde

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Kiseok Lee & Shawn Ni & Ronald A. Ratti, 1995. "Oil Shocks and the Macroeconomy: The Role of Price Variability," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 39-56.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," NBER Working Papers 7488, National Bureau of Economic Research, Inc.
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    5. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
    6. Peter Ferderer, J., 1996. "Oil price volatility and the macroeconomy," Journal of Macroeconomics, Elsevier, vol. 18(1), pages 1-26.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
    8. Brandt, Michael W. & Diebold, Francis X., 2004. "A no-arbitrage approach to range-based estimation of return covariances and correlations," CFS Working Paper Series 2004/07, Center for Financial Studies (CFS).
    9. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    10. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    11. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    12. Martens, M.P.E. & van Dijk, D.J.C., 2006. "Measuring volatility with the realized range," Econometric Institute Research Papers EI 2006-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
    14. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    15. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    16. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
    17. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
    18. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    19. Stephen M. Horan, Jeffrey H. Peterson, and James Mahar, 2004. "Implied Volatility of Oil Futures Options Surrounding OPEC Meetings," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 103-126.
    20. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    21. Bruce Mizrach, 2008. "Jump and Cojump Risk in Subprime Home Equity Derivatives," Departmental Working Papers 200802, Rutgers University, Department of Economics.
    22. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    23. Sadorsky, Perry, 2003. "The macroeconomic determinants of technology stock price volatility," Review of Financial Economics, Elsevier, vol. 12(2), pages 191-205.
    24. Fleming, Jeff & Ostdiek, Barbara, 1999. "The impact of energy derivatives on the crude oil market," Energy Economics, Elsevier, vol. 21(2), pages 135-167, April.
    25. Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
    26. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
    27. repec:oxf:wpaper:2001-w20 is not listed on IDEAS
    28. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    29. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:13:y:2009:i:3:n:5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.