IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Garch Parameter Estimation Using High-Frequency Data

  • Visser, Marcel P.

Estimation of the parameters of Garch models for financial data is typically based on daily close-to-close returns. This paper shows that the efficiency of the parameter estimators may be greatly improved by using volatility proxies based on intraday data. The paper develops a Garch quasi maximum likelihood estimator (QMLE) based on these proxies. Examples of such proxies are the realized volatility and the intraday high-low range. Empirical analysis of the S&P 500 index tick data shows that the use of a suitable proxy may reduce the variances of the estimators of the Garch autoregression parameters by a factor 20.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 9076.

in new window

Date of creation: 10 Jun 2008
Date of revision:
Handle: RePEc:pra:mprapa:9076
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. repec:pse:psecon:2007-11 is not listed on IDEAS
  2. Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Discussion Paper 1996-38, Tilburg University, Center for Economic Research.
  3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  4. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  5. Drost, F.C. & Nijman, T.E., 1990. "Temporal Aggregation Of Garch Processes," Papers 9066, Tilburg - Center for Economic Research.
  6. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  7. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  8. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  9. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
  10. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-96, May.
  11. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  12. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  13. Lumsdaine, Robin L, 1995. "Finite-Sample Properties of the Maximum Likelihood Estimator in GARCH(1,1) and IGARCH(1,1) Models: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 1-10, January.
  14. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  15. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  16. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  17. Drost, F.C. & Klaassen, C.A.J., 1997. "Efficient estimation in semiparametric GARCH models," Other publications TiSEM c7de3f1c-c456-433e-a1c6-2, Tilburg University, School of Economics and Management.
  18. de Vilder, Robin G. & Visser, Marcel P., 2007. "Volatility Proxies for Discrete Time Models," MPRA Paper 4917, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:9076. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.