IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i2p259-281.html
   My bibliography  Save this article

On forecasting daily stock volatility: The role of intraday information and market conditions

Author

Listed:
  • Fuertes, Ana-Maria
  • Izzeldin, Marwan
  • Kalotychou, Elena

Abstract

Several recent studies advocate the use of nonparametric estimators of daily price variability that exploit intraday information. This paper compares four such estimators, realised volatility, realised range, realised power variation and realised bipower variation, by examining their in-sample distributional properties and out-of-sample forecast ranking when the object of interest is the conventional conditional variance. The analysis is based on a 7-year sample of transaction prices for 14 NYSE stocks. The forecast race is conducted in a GARCH framework and relies on several loss functions. The realized range fares relatively well in the in-sample fit analysis, for instance, regarding the extent to which it brings normality in returns. However, overall the realised power variation provides the most accurate 1-day-ahead forecasts. Forecast combination of all four intraday measures produces the smallest forecast errors in about half of the sampled stocks. A market conditions analysis reveals that the additional use of intraday data on day t-1 to forecast volatility on day t is most advantageous when day t is a low volume or an up-market day. These results have implications for option pricing, asset allocation and value-at-risk.

Suggested Citation

  • Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:2:p:259-281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00007-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    2. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    3. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    4. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    6. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    7. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    8. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    9. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    11. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    12. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Elena Kalotychou & Sotiris Staikouras, 2006. "Volatility and trading activity in Short Sterling futures," Applied Economics, Taylor & Francis Journals, vol. 38(9), pages 997-1005.
    15. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    16. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    17. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    18. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    19. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
    20. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    21. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
    22. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    23. R. Glen Donaldson & Mark J. Kamstra, 2005. "Volatility Forecasts, Trading Volume, And The Arch Versus Option-Implied Volatility Trade-Off," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(4), pages 519-538.
    24. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    25. Laux, Paul A. & Ng, Lilian K., 1993. "The sources of GARCH: empirical evidence from an intraday returns model incorporating systematic and unique risks," Journal of International Money and Finance, Elsevier, vol. 12(5), pages 543-560, October.
    26. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    2. Chen, Chun-Hung & Yu, Wei-Choun & Zivot, Eric, 2012. "Predicting stock volatility using after-hours information: Evidence from the NASDAQ actively traded stocks," International Journal of Forecasting, Elsevier, vol. 28(2), pages 366-383.
    3. Liu, Hung-Chun & Chiang, Shu-Mei & Cheng, Nick Ying-Pin, 2012. "Forecasting the volatility of S&P depositary receipts using GARCH-type models under intraday range-based and return-based proxy measures," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 78-91.
    4. Dimitrios P. Louzis & Spyros Xanthopoulos‐Sisinis & Apostolos P. Refenes, 2013. "The Role of High‐Frequency Intra‐daily Data, Daily Range and Implied Volatility in Multi‐period Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 561-576, September.
    5. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    6. Ana-Maria Fuertes & Elena Kalotychou & Natasa Todorovic, 2015. "Daily volume, intraday and overnight returns for volatility prediction: profitability or accuracy?," Review of Quantitative Finance and Accounting, Springer, vol. 45(2), pages 251-278, August.
    7. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 9(3), pages 1-20, September.
    8. Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
    9. repec:eee:empfin:v:46:y:2018:i:c:p:111-129 is not listed on IDEAS
    10. Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
    11. Francq, Christian & Thieu, Le Quyen, 2015. "Qml inference for volatility models with covariates," MPRA Paper 63198, University Library of Munich, Germany.
    12. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    13. repec:eco:journ1:2014-03-20 is not listed on IDEAS
    14. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.
    15. Suk Joon Byun & Dong Woo Rhee & Sol Kim, 2011. "Intraday volatility forecasting from implied volatility," International Journal of Managerial Finance, Emerald Group Publishing, vol. 7(1), pages 83-100, February.
    16. repec:eco:journ1:2014-03-19 is not listed on IDEAS
    17. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
    18. BOUSALAM, Issam & HAMZAOUI, Moustapha & ZOUHAYR, Otman, 2016. "Forecasting Daily Stock Volatility Using GARCH-CJ Type Models with Continuous and Jump Variation," MPRA Paper 69636, University Library of Munich, Germany.
    19. Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:2:p:259-281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.