IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v76y2014icp237-247.html
   My bibliography  Save this article

Numerical distribution functions for seasonal unit root tests

Author

Listed:
  • Diaz-Emparanza, Ignacio

Abstract

It is often necessary to test for the presence of seasonal unit roots when working with time series data observed at intervals of less than a year. One of the most widely used methods for doing this is based on regressing the seasonal difference of the series over the transformations of the series by applying specific filters for each seasonal frequency. This provides test statistics with non-standard distributions. A generalisation of this method for any periodicity is presented and a response surface regressions approach is used to calculate the P-values of the statistics whatever the periodicity and sample size of the data. The algorithms are prepared with the Gretl open source econometrics package and two empirical examples are presented.

Suggested Citation

  • Diaz-Emparanza, Ignacio, 2014. "Numerical distribution functions for seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 237-247.
  • Handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:237-247
    DOI: 10.1016/j.csda.2013.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001047
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    2. Juha Ahtola & George C. Tiao, 1987. "Distributions Of Least Squares Estimators Of Autoregressive Parameters For A Process With Complex Roots On The Unit Circle," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(1), pages 1-14, January.
    3. Serena Ng & Pierre Perron, 2005. "A Note on the Selection of Time Series Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(1), pages 115-134, February.
    4. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    5. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
    6. MacKinnon, James G., 1992. "Approximate Asymptotic Distribution Functions for Unit Roots and Cointegration Tests," Queen's Economics Department Working Papers 273255, Queen's University - Department of Economics.
    7. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    8. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    9. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    10. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    11. John Conlisk, 1974. "Optimal Response Surface Design in Monte Carlo Sampling Experiments," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 3, pages 463-473, National Bureau of Economic Research, Inc.
    12. Giovanni Baiocchi, 2007. "Reproducible research in computational economics: guidelines, integrated approaches, and open source software," Computational Economics, Springer;Society for Computational Economics, vol. 30(1), pages 19-40, August.
    13. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    14. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    15. Franses, P. H., 1990. "Testing For Seasonal Unit Roots In Monthly Data," Econometric Institute Archives 272393, Erasmus University Rotterdam.
    16. MacKinnon, James G., 1995. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Queen's Economics Department Working Papers 273322, Queen's University - Department of Economics.
    17. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    18. Marsaglia, George & Tsang, Wai Wan, 2000. "The Ziggurat Method for Generating Random Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i08).
    19. Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
    20. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    21. MacKinnon, James G, 1994. "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-176, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ehu:biltok:5568 is not listed on IDEAS
    2. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.
    3. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    4. Lawford, Steve & Stamatogiannis, Michalis P., 2009. "The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators," Journal of Econometrics, Elsevier, vol. 148(2), pages 124-130, February.
    5. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    6. Jesús Otero & Jeremy Smith, 2012. "Response surface models for the Leybourne unit root tests and lag order dependence," Computational Statistics, Springer, vol. 27(3), pages 473-486, September.
    7. Sebastian Kripfganz & Daniel C. Schneider, 2020. "Response Surface Regressions for Critical Value Bounds and Approximate p‐values in Equilibrium Correction Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1456-1481, December.
    8. Hayashi, Naotsugu, 2005. "Structural changes and unit roots in Japan's macroeconomic time series: is real business cycle theory supported?," Japan and the World Economy, Elsevier, vol. 17(2), pages 239-259, April.
    9. Giannellis, Nikolaos & Papadopoulos, Athanasios P., 2009. "Testing for efficiency in selected developing foreign exchange markets: An equilibrium-based approach," Economic Modelling, Elsevier, vol. 26(1), pages 155-166, January.
    10. Serletis, Apostolos, 1996. "International evidence on the cyclical behavior of inflation," Economics Letters, Elsevier, vol. 51(2), pages 205-212, May.
    11. Distaso, Walter, 2008. "Testing for unit root processes in random coefficient autoregressive models," Journal of Econometrics, Elsevier, vol. 142(1), pages 581-609, January.
    12. Pui Sun Tam, 2013. "Finite-sample distribution of the augmented Dickey--Fuller test with lag optimization," Applied Economics, Taylor & Francis Journals, vol. 45(24), pages 3495-3511, August.
    13. Jürgen Wolters & Uwe Hassler, 2006. "Unit Root Testing," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 4, pages 41-56, Springer.
    14. Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
    15. Jesús Otero & Jeremy Smith, 2013. "Response Surface Estimates of the Cross-Sectionally Augmented IPS Tests for Panel Unit Roots," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 1-9, January.
    16. Gangzheng Guo & Yixiao Sun & Shaoping Wang, 2019. "Testing for moderate explosiveness," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 73-95.
    17. Gil-Alana, L.A., 2008. "Testing of seasonal integration and cointegration with fractionally integrated techniques: An application to the Danish labour demand," Economic Modelling, Elsevier, vol. 25(2), pages 326-339, March.
    18. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    19. Peter Sephton, 2008. "Critical values of the augmented fractional Dickey–Fuller test," Empirical Economics, Springer, vol. 35(3), pages 437-450, November.
    20. MacKinnon, James, 2001. "Computing Numerical Distribution Functions in Econometrics," Queen's Economics Department Working Papers 273507, Queen's University - Department of Economics.
    21. Ahmed, Walid M.A., 2008. "Cointegration and dynamic linkages of international stock markets: an emerging market perspective," MPRA Paper 26986, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:237-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.