IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Forecasting daily time series using periodic unobserved components time series models

  • Koopman, Siem Jan
  • Ooms, Marius

This discussion paper resulted in a publication in Computational Statistics & Data Analysis (2006). Vol. 51, issue 2, pages 885-903. We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the standard multivariate approach one can interpret periodic time series modelling as a simultaneous analysis of a set of, traditionally, yearly time series where each series is related to a particular season, with a time index in years. Our analysis applies to monthly vector time series related to each day of the month. We focus on forecasting performance and the underlying periodic forecast function, defined by the in-sample observation weights for producing (multi-step) forecasts. These weights facilitate the interpretation of periodic model extensions. We take a statistical state space approach to estimate our model, so that we can identify stochastic unobserved components and we can deal with irregularly spaced time series. We extend existing algorithms to compute observation weights for forecasting based on state space models with regressor variables. Our methods are illustrated by an application to time series of clearly periodic daily Dutch tax revenues. The dimension of our model is large as we allow the time series for each day of the month to be subject to a changing seasonal pattern. Nevertheless, even with only five years of data we find that increased periodic flexibility helps help in simulated out-of-sample forecasting for two extra years of data.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00232-X
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 51 (2006)
Issue (Month): 2 (November)
Pages: 885-903

as
in new window

Handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:885-903
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. A. C. Harvey & Siem Jan Koopman, 2000. "Computing Observation Weights for Signal Extraction and Filtering," Econometric Society World Congress 2000 Contributed Papers 0888, Econometric Society.
  2. Siem Jan Koopman & Marius Ooms, 2003. "Time Series Modelling of Daily Tax Revenues," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469.
  3. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030, December.
  4. Proietti Tommaso, 2004. "Seasonal Specific Structural Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-22, May.
  5. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, December.
  6. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
  7. Osborn, Denise R., 1991. "The implications of periodically varying coefficients for seasonal time-series processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 373-384, June.
  8. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
  9. Marius Ooms & M. Angeles Carnero & Siem Jan Koopman, 2004. "Periodic Heteroskedastic RegARFIMA models for daily electricity spot prices," Econometric Society 2004 Australasian Meetings 158, Econometric Society.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:885-903. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.