IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v8y2004i2n16.html
   My bibliography  Save this article

Seasonal Specific Structural Time Series

Author

Listed:
  • Proietti Tommaso

    () (University of Udine, Italy)

Abstract

The paper introduces the class of seasonal specific structural time series models, according to which each season follows specific dynamics, but is also tied to the others by a common random effect. Seasonal specific models are dynamic variance components models that account for some kind of periodic behaviour, such as periodic heteroscedasticity, and are also tailored to deal with situations such that one or a group of seasons behave differently. Trends and non periodic features can still be extracted and their nature is discussed. Multivariate extensions entertain the case when cointegration pertains only to groups of seasons. It is finally shown that a circular correlation pattern for the idiosyncratic disturbances yields a periodic component that is isomorphic to a trigonometric seasonal com- ponent.

Suggested Citation

  • Proietti Tommaso, 2004. "Seasonal Specific Structural Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-22, May.
  • Handle: RePEc:bpj:sndecm:v:8:y:2004:i:2:n:16
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/snde.2004.8.2/snde.2004.8.2.1205/snde.2004.8.2.1205.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    2. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasert Chaitip & Chukiat Chaiboonsri & N. Rangaswamy & Siriporn Mcdowall, 2009. "Forecasting with X-12-Arima: International Tourist Arrivals to India," Annals of the University of Petrosani, Economics, University of Petrosani, Romania, vol. 9(1), pages 107-128.
    2. Prasert Chaitip & Chukiat Chaiboonsri, 2009. "Forecasting with X-12-ARIMA and ARFIMA: International Tourist Arrivals to India," Annals of the University of Petrosani, Economics, University of Petrosani, Romania, vol. 9(3), pages 147-162.
    3. Balogh, Peter & Kovacs, Sandor & Chaiboonsri, Chukiat & Chaitip, Prasert, 2009. "Forecasting with X-12-ARIMA: International tourist arrivals to India and Thailand," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 3.
    4. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    5. Prasert Chaitip & Chukiat Chaiboonsri, 2009. "Down Trend Forecasting Method with ARFIMA: International Tourist Arrivals to Thailand," Annals of the University of Petrosani, Economics, University of Petrosani, Romania, vol. 9(1), pages 143-150.
    6. Philip Kostov & John Lingard, 2005. "Seasonally specific model analysis of UK cereals prices," Econometrics 0507014, EconWPA.
    7. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:8:y:2004:i:2:n:16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.