IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v32y2016i4p1234-1246.html
   My bibliography  Save this article

Testing the historic tracking of climate models

Author

Listed:
  • Beenstock, Michael
  • Reingewertz, Yaniv
  • Paldor, Nathan

Abstract

IPCC and others use in-sample correlations to confirm the ability of climate models to track the global surface temperature (GST) historically. However, a high correlation is a necessary but not sufficient condition for confirmation, because GST is nonstationary. In addition, the tracking errors must also be stationary. Cointegration tests using monthly hindcast data for GST generated by 22 climate change models over the period 1880–2010 are carried out for testing the hypothesis that these hindcasts track GST in the longer run. We show that, although GST and their hindcasts are highly correlated, they unanimously fail to be cointegrated. This means that all 22 models fail to track GST historically in the longer run, because their tracking errors are nonstationary. This juxtaposition of a high correlation and cointegration failure may be explained in terms of the phenomenon of spurious correlation, which occurs when data such as GST embody time trends.

Suggested Citation

  • Beenstock, Michael & Reingewertz, Yaniv & Paldor, Nathan, 2016. "Testing the historic tracking of climate models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1234-1246.
  • Handle: RePEc:eee:intfor:v:32:y:2016:i:4:p:1234-1246
    DOI: 10.1016/j.ijforecast.2016.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920701630053X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansen, Soren & Schaumburg, Ernst, 1998. "Likelihood analysis of seasonal cointegration," Journal of Econometrics, Elsevier, vol. 88(2), pages 301-339, November.
    2. Watson, Mark W, 1993. "Measures of Fit for Calibrated Models," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 1011-1041, December.
    3. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
    4. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
    5. Finn E. Kydland & Edward C. Prescott, 1996. "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 69-85, Winter.
    6. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    7. Fildes, Robert & Kourentzes, Nikolaos, 2011. "Validation and forecasting accuracy in models of climate change: Postscript," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1004-1005, October.
    8. Fildes, Robert & Kourentzes, Nikolaos, 2011. "Validation and forecasting accuracy in models of climate change," International Journal of Forecasting, Elsevier, vol. 27(4), pages 968-995, October.
    9. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    10. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.
    11. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    12. Robert K. Kaufmann & David I. Stern, 2004. "A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity," Rensselaer Working Papers in Economics 0411, Rensselaer Polytechnic Institute, Department of Economics.
    13. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    14. David Stern & Robert Kaufmann, 2014. "Anthropogenic and natural causes of climate change," Climatic Change, Springer, vol. 122(1), pages 257-269, January.
    15. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
    16. Terence C. Mills, 2007. "Time series modelling of two millennia of northern hemisphere temperatures: long memory or shifting trends?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 83-94, January.
    17. Choi, In & Saikkonen, Pentti, 2010. "Tests For Nonlinear Cointegration," Econometric Theory, Cambridge University Press, vol. 26(3), pages 682-709, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:phsmap:v:509:y:2018:i:c:p:121-139 is not listed on IDEAS
    2. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:32:y:2016:i:4:p:1234-1246. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.