IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Tests For Nonlinear Cointegration

  • Choi, In
  • Saikkonen, Pentti

This paper develops tests for the null hypothesis of cointegration in the nonlinear regression model with I (1) variables. The test statistics we use in this paper are Kwiatkowski, Phillips, Schmidt, and Shin’s (1992; KPSS hereafter) tests for the null of stationarity, though using other kinds of tests is also possible. The tests are shown to depend on the limiting distributions of the estimators and parameters of the nonlinear model when they use full-sample residuals from the nonlinear least squares and nonlinear leads-and-lags regressions. This feature makes it difficult to use them in practice. As a remedy, this paper develops tests using subsamples of the regression residuals. For these tests, first, the nonlinear least squares and nonlinear leads-and-lags regressions are run and residuals are calculated. Second, the KPSS tests are applied using subresiduals of size b . As long as b /T → 0 as T → ∞, where T is the sample size, the tests using the subresiduals have limiting distributions that are not affected by the limiting distributions of the full-sample estimators and the parameters of the model. Third, the Bonferroni procedure is used for a selected number of the subresidual-based tests. Monte Carlo simulation shows that the tests work reasonably well in finite samples for polynomial and smooth transition regression models when the block size is chosen by the minimum volatility rule. In particular, the subresidual-based tests using the leads-and-lags regression residuals appear to be promising for empirical work. An empirical example studying the U.S. money demand equation illustrates the use of the tests.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://journals.cambridge.org/abstract_S0266466609990065
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 26 (2010)
Issue (Month): 03 (June)
Pages: 682-709

as
in new window

Handle: RePEc:cup:etheor:v:26:y:2010:i:03:p:682-709_99
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page: http://journals.cambridge.org/jid_ECTEmail:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:03:p:682-709_99. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.