IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i11p2641-2654.html
   My bibliography  Save this article

Exact maximum likelihood estimation for non-stationary periodic time series models

Author

Listed:
  • Hindrayanto, Irma
  • Koopman, Siem Jan
  • Ooms, Marius

Abstract

Time series models with parameter values that depend on the seasonal index are commonly referred to as periodic models. Periodic formulations for two classes of time series models are considered: seasonal autoregressive integrated moving average and unobserved components models. Convenient state space representations of the periodic models are proposed to facilitate model identification, specification and exact maximum likelihood estimation of the periodic parameters. These formulations do not require a priori (seasonal) differencing of the time series. The time-varying state space representation is an attractive alternative to the time-invariant vector representation of periodic models which typically leads to a high dimensional state vector in monthly periodic time series models. A key development is our method for computing the variance-covariance matrix of the initial set of observations which is required for exact maximum likelihood estimation. The two classes of periodic models are illustrated for a monthly postwar US unemployment time series.

Suggested Citation

  • Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2641-2654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00155-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    2. Matas-Mir, Antonio & Osborn, Denise R., 2004. "Does seasonality change over the business cycle? An investigation using monthly industrial production series," European Economic Review, Elsevier, vol. 48(6), pages 1309-1332, December.
    3. Siem Jan Koopman & John A. D. Aston, 2006. "A non-Gaussian generalization of the Airline model for robust seasonal adjustment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 325-349.
    4. Warne Anders & Vredin Anders, 2006. "Unemployment and Inflation Regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(2), pages 1-52, May.
    5. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    8. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models. I. Time series," LSE Research Online Documents on Economics 57580, London School of Economics and Political Science, LSE Library.
    9. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    10. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    11. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    12. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    13. Jeremy Penzer & Yorghos Tripodis, 2007. "Single-season heteroscedasticity in time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 189-202.
    14. Qiwei Yao & Peter J. Brockwell, 2006. "Gaussian Maximum Likelihood Estimation For ARMA Models. I. Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 857-875, November.
    15. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    16. A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
    17. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    18. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    19. Busetti, Fabio & Harvey, Andrew, 2003. "Seasonality Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 420-436, July.
    20. Kim, Chang-Jin & Nelson, Charles R & Piger, Jeremy, 2004. "The Less-Volatile U.S. Economy: A Bayesian Investigation of Timing, Breadth, and Potential Explanations," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 80-93, January.
    21. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    22. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    23. Eiji Kurozumi, 2002. "Testing For Periodic Stationarity," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 243-270.
    24. Yao, Qiwei & Brockwell, Peter J., 2006. "Gaussian maximum likelihood estimation for ARMA models I: time series," LSE Research Online Documents on Economics 5825, London School of Economics and Political Science, LSE Library.
    25. Osborn, Denise R, 1988. "Seasonality and Habit Persistence in a Life Cycle Model of Consumptio n," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(4), pages 255-266, October-D.
    26. Peter Bloomfield & Harry L. Hurd & Robert B. Lund, 1994. "Periodic Correlation In Stratospheric Ozone Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 127-150, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alj, Abdelkamel & Jónasson, Kristján & Mélard, Guy, 2016. "The exact Gaussian likelihood estimation of time-dependent VARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 633-644.
    2. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    3. Boshnakov, Georgi N. & Lambert-Lacroix, Sophie, 2012. "A periodic Levinson-Durbin algorithm for entropy maximization," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 15-24, January.
    4. Thornton, Michael A., 2013. "Removing seasonality under a changing regime: Filtering new car sales," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 4-14.
    5. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
    6. Milenković, Miloš S. & Bojović, Nebojša J. & Švadlenka, Libor & Melichar, Vlastimil, 2015. "A stochastic model predictive control to heterogeneous rail freight car fleet sizing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 162-198.
    7. Dordonnat, Virginie & Koopman, Siem Jan & Ooms, Marius, 2012. "Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3134-3152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    2. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    3. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    5. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    6. Okimoto, Tatsuyoshi & Shimotsu, Katsumi, 2010. "Decline in the persistence of real exchange rates, but not sufficient for purchasing power parity," Journal of the Japanese and International Economies, Elsevier, vol. 24(3), pages 395-411, September.
    7. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    8. Enders, Walter & Ma, Jun, 2011. "Sources of the great moderation: A time-series analysis of GDP subsectors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 67-79, January.
    9. Cendejas Bueno, José Luis & Castañeda, Juan Enrique & Muñoz, Félix, 2015. "Business cycles and monetary regimes in the U.S. (1960 – 2014): A plea for monetary stability," Working Papers in Economic Theory 2015/05, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    10. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    11. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    12. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    13. Steven J. Davis & James A. Kahn, 2008. "Interpreting the Great Moderation: Changes in the Volatility of Economic Activity at the Macro and Micro Levels," Journal of Economic Perspectives, American Economic Association, vol. 22(4), pages 155-180, Fall.
    14. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    15. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    16. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    17. Haldrup, Niels & Hylleberg, Svend & Pons, Gabriel & Sanso, Andreu, 2007. "Common Periodic Correlation Features and the Interaction of Stocks and Flows in Daily Airport Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 21-32, January.
    18. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    19. Norhana Endut & James Morley & Pao-Lin Tien, 2018. "The changing transmission mechanism of US monetary policy," Empirical Economics, Springer, vol. 54(3), pages 959-987, May.
    20. Bullard, James & Singh, Aarti, 2008. "Worldwide macroeconomic stability and monetary policy rules," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 34-47, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2641-2654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.