IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v247y2025ics0304407624002884.html
   My bibliography  Save this article

Shrinkage estimators for periodic autoregressions

Author

Listed:
  • Paap, Richard
  • Franses, Philip Hans

Abstract

A periodic autoregression [PAR] is a seasonal time series model where the autoregressive parameters vary over the seasons. A drawback of PAR models is that the number of parameters increases dramatically when the number of seasons gets large. Hence, one needs many periods with intra-seasonal data to be able to get reliable parameter estimates. Therefore, these models are rarely applied for weekly or daily observations. In this paper we propose shrinkage estimators which shrink the periodic autoregressive parameters to a common value determined by the data. We derive the asymptotic properties of these estimators in case of a quadratic penalty and we illustrate the bias–variance trade-off. Empirical illustrations show that shrinkage improves forecasting with PAR models.

Suggested Citation

  • Paap, Richard & Franses, Philip Hans, 2025. "Shrinkage estimators for periodic autoregressions," Journal of Econometrics, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:econom:v:247:y:2025:i:c:s0304407624002884
    DOI: 10.1016/j.jeconom.2024.105937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624002884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    3. Franses, Philip Hans, 1995. "The effects of seasonally adjusting a periodic autoregressive process," Computational Statistics & Data Analysis, Elsevier, vol. 19(6), pages 683-704, June.
    4. Vinod, H. D., 1995. "Double bootstrap for shrinkage estimators," Journal of Econometrics, Elsevier, vol. 68(2), pages 287-302, August.
    5. Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
    6. Wells, J. M., 1997. "Modelling seasonal patterns and long-run trends in U.S. time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 407-420, September.
    7. Novales, Alfonso & de Fruto, Rafael Flores, 1997. "Forecasting with periodic models A comparison with time invariant coefficient models," International Journal of Forecasting, Elsevier, vol. 13(3), pages 393-405, September.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Miller, Don M. & Williams, Dan, 2004. "Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program," International Journal of Forecasting, Elsevier, vol. 20(4), pages 529-549.
    10. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    11. Chatterjee, A. & Lahiri, S. N., 2011. "Bootstrapping Lasso Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 608-625.
    12. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    13. Miller, Don M. & Williams, Dan, 2003. "Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 19(4), pages 669-684.
    14. Kiygi-Calli, Meltem & Weverbergh, Marcel & Franses, Philip Hans, 2017. "Modeling intra-seasonal heterogeneity in hourly advertising-response models: Do forecasts improve?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 90-101.
    15. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    16. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030, Decembrie.
    17. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, June.
    18. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    19. Noakes, Donald J. & McLeod, A. Ian & Hipel, Keith W., 1985. "Forecasting monthly riverflow time series," International Journal of Forecasting, Elsevier, vol. 1(2), pages 179-190.
    20. Philip Hans Franses & Richard Paap, 2011. "Random‐coefficient periodic autoregressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 101-115, February.
    21. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    22. Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2019. "Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis," Post-Print hal-02878506, HAL.
    23. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    24. Franses, Philip Hans, 1994. "A multivariate approach to modeling univariate seasonal time series," Journal of Econometrics, Elsevier, vol. 63(1), pages 133-151, July.
    25. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    26. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    2. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    3. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    4. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    5. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    6. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    7. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    8. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    9. Vigo Pereira, Caio, 2021. "Portfolio efficiency with high-dimensional data as conditioning information," International Review of Financial Analysis, Elsevier, vol. 77(C).
    10. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    11. Gelper, Sarah & Wilms, Ines & Croux, Christophe, 2016. "Identifying Demand Effects in a Large Network of Product Categories," Journal of Retailing, Elsevier, vol. 92(1), pages 25-39.
    12. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    13. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    14. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    15. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    16. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, September.
    17. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    18. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    19. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    20. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.

    More about this item

    Keywords

    Periodic autoregression; Shrinkage; Pooling; Ridge; Lasso; Forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:247:y:2025:i:c:s0304407624002884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.