IDEAS home Printed from https://ideas.repec.org/p/man/sespap/0304.html
   My bibliography  Save this paper

Seasonal Adjustment and the Detection of Business Cycle Phases

Author

Listed:
  • A Matas-Mir
  • D R Osborn

Abstract

To date, there has been little investigation of the impact of seasonal adjustment on the detection of business cycle expansion and recession regimes. We study this question both analytically and through Monte Carlo simulations. Analytically, we view the occurrence of a single business cycle regime as a structural break that is later reversed, showing that the effect of the linear symmetric X-11 filter differs with the duration of the regime. Through the use of Markov switching models for regime identification, the simulation analysis shows that seasonal adjustment has desirable properties in clarifying the true regime when this is well underway, but it distorts regime inference around turning points, with this being especially marked after the end of recessions and when the one-sided X-11 filter is employed. JEL Classification: E32, C22, C80
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • A Matas-Mir & D R Osborn, 2003. "Seasonal Adjustment and the Detection of Business Cycle Phases," Economics Discussion Paper Series 0304, Economics, The University of Manchester.
  • Handle: RePEc:man:sespap:0304
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ghysels, Eric & Perron, Pierre, 1996. "The effect of linear filters on dynamic time series with structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 69-97, January.
    2. Ghysels, Eric & Perron, Pierre, 1993. "The effect of seasonal adjustment filters on tests for a unit root," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 57-98.
    3. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 374-386, July.
    4. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    5. Barsky, Robert B & Miron, Jeffrey A, 1989. "The Seasonal Cycle and the Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 503-534, June.
    6. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Time Series: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 343-349, October.
    7. Canova, Fabio & Ghysels, Eric, 1994. "Changes in seasonal patterns : Are they cyclical?," Journal of Economic Dynamics and Control, Elsevier, vol. 18(6), pages 1143-1171, November.
    8. Cecchetti, Stephen G. & Kashyap, Anil K, 1996. "International cycles," European Economic Review, Elsevier, vol. 40(2), pages 331-360, February.
    9. Burridge, Peter & Wallis, Kenneth F, 1984. "Unobserved-Components Models for Seasonal Adjustment Filters," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 350-359, October.
    10. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    11. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    12. Krane, Spencer & Wascher, William, 1999. "The cyclical sensitivity of seasonality in U.S. employment," Journal of Monetary Economics, Elsevier, vol. 44(3), pages 523-553, December.
    13. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    14. Christiano, Lawrence J. & Todd, Richard M., 2002. "The conventional treatment of seasonality in business cycle analysis: does it create distortions?," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 335-364, March.
    15. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    16. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Lombardo & Peter McAdam, 2010. "Incorporating financial frictions into new-generation macro models," Research Bulletin, European Central Bank, vol. 9, pages 13-16.
    2. Jani Beko & Timotej Jagric, 2009. "Demand models for direct mail and periodicals delivery services: results for a transition economy," Applied Economics, Taylor & Francis Journals, vol. 43(9), pages 1125-1138.
    3. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    4. D R Osborn & A Matas-Mir, 2003. "The Extent of Seasonal/Business Cycle Interactions in European Industrial Production," Centre for Growth and Business Cycle Research Discussion Paper Series 38, Economics, The University of Manchester.
    5. Fiorella De Fiore & Oreste Tristani, 2010. "Financial conditions and monetary policy," Research Bulletin, European Central Bank, vol. 9, pages 10-12.
    6. Crowley, Patrick M. & Lee, Jim, 2005. "Decomposing the co-movement of the business cycle: a time-frequency analysis of growth cycles in the euro area," Bank of Finland Research Discussion Papers 12/2005, Bank of Finland.
    7. Cornelia Holthausen & Huw Pill, 2010. "The forgotten markets: How understanding money markets helps us to understand the financial crisis," Research Bulletin, European Central Bank, vol. 9, pages 2-5.
    8. Crowley, Patrick M. & Lee, Jim, 2005. "Decomposing the co-movement of the business cycle : a time-frequency analysis of growth cycles in the euro area," Research Discussion Papers 12/2005, Bank of Finland.
    9. Lacroix, R., 2008. "Analyse conjoncturelle de données brutes et estimation de cycles Partie 2 : mise en oeuvre empirique," Working papers 210, Banque de France.
    10. Angela Maddaloni & José-Luis Peydró, 2010. "Bank lending standards and the origins and implications of the current banking crisis," Research Bulletin, European Central Bank, vol. 9, pages 6-9.
    11. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. repec:zbw:bofrdp:2005_012 is not listed on IDEAS
    13. Tomas del Barrio Castro & Denise R. Osborn, 2006. "A Random Walk through Seasonal Adjustment: Noninvertible Moving Averages and Unit Root Tests," Economics Discussion Paper Series 0612, Economics, The University of Manchester.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    2. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Tomas del Barrio Castro & Denise R. Osborn, 2006. "A Random Walk through Seasonal Adjustment: Noninvertible Moving Averages and Unit Root Tests," Economics Discussion Paper Series 0612, Economics, The University of Manchester.
    4. Thornton, Michael A., 2013. "Removing seasonality under a changing regime: Filtering new car sales," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 4-14.
    5. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    6. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    7. Irma Hindrayanto & Jan Jacobs & Denise Osborn, 2014. "On trend-cycle-seasonal interactions," DNB Working Papers 417, Netherlands Central Bank, Research Department.
    8. Webel, Karsten, 2016. "A data-driven selection of an appropriate seasonal adjustment approach," Discussion Papers 07/2016, Deutsche Bundesbank.
    9. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    10. Maravall, Agustín, 1999. "Short-term and long-term trends, seasonal and the business cycle," DES - Working Papers. Statistics and Econometrics. WS 6291, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    12. S.M.Husnain Bokhari & Ishaque Ahmed Ansari, 2009. "Seasonal Adjustment Of Some Financial Indicators Of Pakistan," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 5(2), pages 107-123.
    13. S. M. Husnain Bokhari & Ishaque Ahmed Ansari, 2009. "Seasonal Adjustment Of Some Financial Indicators Of Pakistan," IBT Journal of Business Studies (JBS), Ilma University, Faculty of Management Science, vol. 5(2), pages 5-3.
    14. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    15. Silhan, Peter A., 2014. "Income smoothing from a Census X-12 perspective," Advances in accounting, Elsevier, vol. 30(1), pages 106-115.
    16. Matas-Mir, Antonio & Osborn, Denise R., 2004. "Does seasonality change over the business cycle? An investigation using monthly industrial production series," European Economic Review, Elsevier, vol. 48(6), pages 1309-1332, December.
    17. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    18. Krane, Spencer & Wascher, William, 1999. "The cyclical sensitivity of seasonality in U.S. employment," Journal of Monetary Economics, Elsevier, vol. 44(3), pages 523-553, December.
    19. McElroy, Tucker S. & Jach, Agnieszka, 2023. "Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    20. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 374-386, July.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:man:sespap:0304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marianne Sensier (email available below). General contact details of provider: https://edirc.repec.org/data/semanuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.