IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan

  • Shintani, Mototsugu

This paper extends the diffusion index (DI) forecast approach of Stock and Watson (1998, 2002) to the case of possibly nonlinear dynamic factor models. When the number of series is large, a two-step procedure based on the method of principal components is useful since it allows wide variety of nonlinearity in the factors. The factors extracted from a large Japanese data suggest some evidence of nonlinear structure. Furthermore, both the linear and nonlinear DI forecasts in Japan outperform traditional time series forecasts, while the linear DI forecast, in most cases, performs as well as the nonlinear DI forecast.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by Blackwell Publishing in its journal Journal of Money, Credit and Banking.

Volume (Year): 37 (2005)
Issue (Month): 3 (June)
Pages: 517-38

as
in new window

Handle: RePEc:mcb:jmoncb:v:37:y:2005:i:3:p:517-38
Contact details of provider: Web page: http://www.blackwellpublishing.com/journal.asp?ref=0022-2879

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Watanabe, Toshiaki, 2003. "Measuring Business Cycle Turning Points in Japan with a Dynamic Markov Switching Factor Model," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 21(1), pages 35-68, February.
  2. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
  3. Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
  4. Fan, Yanqin & Li, Qi, 1997. "A consistent nonparametric test for linearity of AR(p) models," Economics Letters, Elsevier, vol. 55(1), pages 53-59, August.
  5. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
  6. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  7. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
  8. Kenneth D. West & Hali J. Edison & Dongchul Cho, 1993. "A utility based comparison of some models of exchange rate volatility," International Finance Discussion Papers 441, Board of Governors of the Federal Reserve System (U.S.).
  9. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  10. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
  11. Timmermann, Allan, 2000. "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pages 75-111, May.
  12. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-84, September.
  13. Norman R. Swanson & Halbert White, 1995. "A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Macroeconomics 9503004, EconWPA.
  14. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
  15. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  16. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
  17. Norman R. Swanson, 2000. "An Out of Sample Test for Granger Causality," Econometric Society World Congress 2000 Contributed Papers 0362, Econometric Society.
  18. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  19. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  20. Hess, Gregory D & Iwata, Shigeru, 1997. "Measuring and Comparing Business-Cycle Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 432-44, October.
  21. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
  22. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-96, November.
  23. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  24. Shin-ichi Fukuda & Takashi Onodera, 2001. "A New Composite Index of Coincident Economic Indicators in Japan: How can we improve the forecast performance? ," CIRJE F-Series CIRJE-F-101, CIRJE, Faculty of Economics, University of Tokyo.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mcb:jmoncb:v:37:y:2005:i:3:p:517-38. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.