IDEAS home Printed from https://ideas.repec.org/p/van/wpaper/0418.html
   My bibliography  Save this paper

A Dynamic Factor Approach to Nonlinear Stability Analysis

Author

Listed:
  • Mototsugu Shintani

    () (Department of Economics, Vanderbilt University)

Abstract

A method of principal components is employed to investigate nonlinear dynamic factor structure using a large panel data. The evidence suggests the possibility of nonlinearity in the U.S. while it excludes the class of nonlinearity that can generate endogenous fluctuation or chaos.

Suggested Citation

  • Mototsugu Shintani, 2004. "A Dynamic Factor Approach to Nonlinear Stability Analysis," Vanderbilt University Department of Economics Working Papers 0418, Vanderbilt University Department of Economics.
  • Handle: RePEc:van:wpaper:0418
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/VUECON/vu04-w18.pdf
    File Function: First version, 2004
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Potter, Simon M., 2000. "Nonlinear impulse response functions," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1425-1446, September.
    3. Shintani, Mototsugu & Linton, Oliver, 2004. "Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos," Journal of Econometrics, Elsevier, vol. 120(1), pages 1-33, May.
    4. Michael, Panos & Nobay, A Robert & Peel, David A, 1997. "Transactions Costs and Nonlinear Adjustment in Real Exchange Rates: An Empirical Investigation," Journal of Political Economy, University of Chicago Press, vol. 105(4), pages 862-879, August.
    5. Shintani, Mototsugu, 2005. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-538, June.
    6. Barnett, William A. & Ronald Gallant, A. & Hinich, Melvin J. & Jungeilges, Jochen A. & Kaplan, Daniel T. & Jensen, Mark J., 1995. "Robustness of nonlinearity and chaos tests to measurement error, inference method, and sample size," Journal of Economic Behavior & Organization, Elsevier, vol. 27(2), pages 301-320, July.
    7. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    8. Fan, Yanqin & Li, Qi, 1997. "A consistent nonparametric test for linearity of AR(p) models," Economics Letters, Elsevier, vol. 55(1), pages 53-59, August.
    9. Bask Mikael & de Luna Xavier, 2002. "Characterizing the Degree of Stability of Non-linear Dynamic Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(1), pages 1-19, April.
    10. Lee Tae-Hwy, 2001. "Neural Network Test and Nonparametric Kernel Test for Neglected Nonlinearity in Regression Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(4), pages 1-15, January.
    11. Dechert, W D & Gencay, R, 1992. "Lyapunov Exponents as a Nonparametric Diagnostic for Stability Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 41-60, Suppl. De.
    12. Abhyankar, A & Copeland, L S & Wong, W, 1997. "Uncovering Nonlinear Structure in Real-Time Stock-Market Indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 1-14, January.
    13. Serletis, Apostolos, 1995. "Random Walks, Breaking Trend Functions, and the Chaotic Structure of the Velocity of Money," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 453-458, October.
    14. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    15. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    16. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    17. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    18. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
    19. Whang, Yoon-Jae & Linton, Oliver, 1999. "The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series," Journal of Econometrics, Elsevier, vol. 91(1), pages 1-42, July.
    20. Mototsugu Shintani & Oliver Linton, 2003. "Is There Chaos in the World Economy? A Nonparametric Test Using Consistent Standard Errors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(1), pages 331-357, February.
    21. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    22. Day, Richard H, 1982. "Irregular Growth Cycles," American Economic Review, American Economic Association, vol. 72(3), pages 406-414, June.
    23. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    24. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
    25. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    26. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
    27. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    28. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mototsugu Shintani & Zi-yi Guo, 2015. "Improving the Finite Sample Performance of Autoregression Estimators in Dynamic Factor Models: A Bootstrap Approach," Vanderbilt University Department of Economics Working Papers 15-00013, Vanderbilt University Department of Economics.
    2. Shintani, Mototsugu & Guo, Zi-Yi, 2011. "Finite Sample Performance of Principal Components Estimators for Dynamic Factor Models: Asymptotic vs. Bootstrap Approximations," EconStor Preprints 167627, ZBW - German National Library of Economics.

    More about this item

    Keywords

    Chaos; Dynamic Factor Model; Lyapunov Exponents; Nonparametric Regression; Principal Components;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:van:wpaper:0418. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (John P. Conley). General contact details of provider: http://www.vanderbilt.edu/econ/wparchive/index.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.