IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v21y2000i4p457-487.html
   My bibliography  Save this article

Nonparametric Lag Selection for Time Series

Author

Listed:
  • Rolf Tschernig
  • Lijian Yang

Abstract

A nonparametric version of the Final Prediction Error (FPE) is analysed for lag selection in nonlinear autoregressive time series under very general conditions including heteroskedasticity. We prove consistency and derive probabilities of incorrect selections that have been previously unavailable. Since it is more likely to overfit (have too many lags) than to underfit (miss some lags), a correction factor is proposed to reduce overfitting and hence increase correct fitting. For the FPE calculation, the local linear estimator is introduced in addition to the Nadaraya‐Watson estimator in order to cover a very broad class of processes. To achieve faster computation, a plug‐in band‐width is suggested for the local linear estimator. Our Monte‐Carlo study corroborates that the correction factor generally improves the probability of correct lag selection for both linear and nonlinear processes and that the plug‐in bandwidth works at least as well as its commonly used competitor. The proposed methods are applied to the Canadian lynx data and daily returns of DM/US‐Dollar exchange rates.

Suggested Citation

  • Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
  • Handle: RePEc:bla:jtsera:v:21:y:2000:i:4:p:457-487
    DOI: 10.1111/1467-9892.00193
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00193
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    2. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    3. Härdle, Wolfgang & Tsybakov, A. & Yang, L., 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    2. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    3. Stanislav Anatolyev, 2007. "Optimal Instruments In Time Series: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 143-173, February.
    4. Bruno, Giancarlo, 2008. "Forecasting Using Functional Coefficients Autoregressive Models," MPRA Paper 42335, University Library of Munich, Germany.
    5. Wolfgang Härdle & Torsten Kleinow & Rolf Tschernig, 2001. "Web Quantlets for Time Series Analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 179-188, March.
    6. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871.
    7. Diks Cees & Manzan Sebastiano, 2002. "Tests for Serial Independence and Linearity Based on Correlation Integrals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(2), pages 1-22, July.
    8. Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.
    9. Rech, Gianluigi & Teräsvirta, Timo & Tschernig, Rolf, 1999. "A simple variable selection technique for nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 296, Stockholm School of Economics, revised 06 Apr 2000.
    10. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    11. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    12. CHIKHI, Mohamed, 2017. "Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange [Exogenous Shocks and nonlinearity in the stock exchange seri," MPRA Paper 76691, University Library of Munich, Germany, revised 2017.
    13. Cai, Zongwu, 2003. "Trending Time-Varying Coefficient Models With Serially Correlated Errors," SFB 373 Discussion Papers 2003,7, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Cees Diks & Sebastiano Manzan, 2001. "Tests for Serial Independence and Linearity based on Correlation Integrals," Tinbergen Institute Discussion Papers 01-085/1, Tinbergen Institute.
    15. Chikhi, Mohamed & Terraza, Michel, 2002. "Un essai de prévision non paramétrique de l'action France Télécom [A nonparametric prediction test of the France Telecom stock proces]," MPRA Paper 77268, University Library of Munich, Germany, revised Dec 2003.
    16. Manzan, S., 2002. "Model Selection for Nonlinear Time Series," CeNDEF Working Papers 02-12, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    17. Guo, Zheng-Feng & Shintani, Mototsugu, 2011. "Nonparametric lag selection for nonlinear additive autoregressive models," Economics Letters, Elsevier, vol. 111(2), pages 131-134, May.
    18. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    19. Yang, Lijian & Tschernig, Rolf, 1997. "Multivariate plug-in bandwidth for local linear regression," SFB 373 Discussion Papers 1997,99, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.
    2. Kim, Woocheol & Linton, Oliver, 2003. "A local instrumental variable estimation method for generalized additive volatility models," LSE Research Online Documents on Economics 2028, London School of Economics and Political Science, LSE Library.
    3. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    4. Miao Yang & Lan Xue & Lijian Yang, 2016. "Variable selection for additive model via cumulative ratios of empirical strengths total," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 595-616, September.
    5. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    6. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    7. Dumitriu, Ramona & Stefanescu, Razvan, 2013. "Efecte Gone Fishin’ la Bursa de Valori din Bucureşti [Gone Fishin’ Effects on the Bucharest Stock Exchange]," MPRA Paper 52473, University Library of Munich, Germany, revised 28 Sep 2013.
    8. Stefanescu, Răzvan & Dumitriu, Ramona, 2016. "The impact of the Great Lent and of the Nativity Fast on the Bucharest Stock Exchange," MPRA Paper 89023, University Library of Munich, Germany, revised 22 Dec 2016.
    9. Kreiss, Jens-Peter & Neumann, Michael H. & Yao, Qiwei, 2008. "Bootstrap tests for simple structures in nonparametric time series regression," LSE Research Online Documents on Economics 24135, London School of Economics and Political Science, LSE Library.
    10. K. Lebedeva, 2015. "An Empirical Analysis of the Russian Financial Markets’ Liquidity and Returns," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 3(3), pages 5-31.
    11. Feng, Yuanhua, 2006. "A local dynamic conditional correlation model," MPRA Paper 1592, University Library of Munich, Germany.
    12. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, enero-jun.
    13. Carroll, Raymond J. & Härdle, Wolfgang & Mammen, Enno, 1999. "Estimation in an additive model when the components are linked parametrically," SFB 373 Discussion Papers 1999,1, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2017. "A Justification of Conditional Confidence Intervals," Research Memorandum 023, Maastricht University, Graduate School of Business and Economics (GSBE).
    15. Stefanescu, Razvan & Dumitriu, Ramona, 2013. "MOY effects in returns and in volatilities of the Romanian capital market," MPRA Paper 52474, University Library of Munich, Germany, revised 28 Oct 2013.
    16. Ramona Dumitriu & Razvan Stefanescu, 2016. "Impact of the NYSE Shocks on the European Developed Capital Markets," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 327-334.
    17. Jim Granato & William West, 1994. "Words And Deeds: Symbolic Politics And Decision Making At The Federal Reserve," Economics and Politics, Wiley Blackwell, vol. 6(3), pages 233-255, November.
    18. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
    19. W. Jos Jansen, 1998. "The mean-variance model with capital controls and expectations formation. A test on German portfolio data," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 333-346.
    20. Yang, Lijian, 2006. "A semiparametric GARCH model for foreign exchange volatility," Journal of Econometrics, Elsevier, vol. 130(2), pages 365-384, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:21:y:2000:i:4:p:457-487. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.