IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v31y2022i2d10.1007_s10260-021-00574-6.html
   My bibliography  Save this article

Estimation and decomposition of food price inflation risk

Author

Listed:
  • Kris Boudt

    (Ghent University
    Vrije Universiteit Brussel
    Vrije Universiteit Amsterdam)

  • Hong Anh Luu

    (Vrije Universiteit Brussel)

Abstract

Ensuring aggregate food price stability requires a forward-looking assessment of the risk that unexpected deviations in individual food items’ inflation lead to large shocks in the aggregate food price inflation. To do so, we propose using a multivariate GARCH framework in combination with the Euler method to (1) estimate the conditional standard deviation and quantiles of the food price inflation shocks and (2) attribute the total risk to the underlying food items. For the FAO food price index, we find that even though meat inflation systematically has the highest weight in the aggregate index, cereal inflation is the main contributor to the total food price inflation risk over the period 1990–2018. The use of time series models and the Cornish-Fisher expansion make the risk characterization forward-looking and a potentially helpful tool for risk management.

Suggested Citation

  • Kris Boudt & Hong Anh Luu, 2022. "Estimation and decomposition of food price inflation risk," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 295-319, June.
  • Handle: RePEc:spr:stmapp:v:31:y:2022:i:2:d:10.1007_s10260-021-00574-6
    DOI: 10.1007/s10260-021-00574-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-021-00574-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-021-00574-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klein, Benjamin, 1977. "The Demand for Quality-adjusted Cash Balances: Price Uncertainty in the U.S. Demand for Money Function," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 691-715, August.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Omotosho, Babatunde S. & Doguwa, Sani I., 2012. "Understanding the dynamics of inflation volatility in Nigeria: A GARCH perspective," MPRA Paper 96125, University Library of Munich, Germany.
    4. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    5. Ruth Judson & Athanasios Orphanides, 1999. "Inflation, Volatility and Growth," International Finance, Wiley Blackwell, vol. 2(1), pages 117-138, April.
    6. Derek Headey & Shenggen Fan, 2008. "Anatomy of a crisis: the causes and consequences of surging food prices," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 375-391, November.
    7. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Moser, Gabriel & Rumler, Fabio & Scharler, Johann, 2007. "Forecasting Austrian inflation," Economic Modelling, Elsevier, vol. 24(3), pages 470-480, May.
    12. Khan, Mohsin S, 1977. "The Variability of Expectations in Hyperinflations," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 817-827, August.
    13. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    14. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    15. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    16. Apergis, Nicholas & Rezitis, Anthony N., 2011. "Food Price Volatility and Macroeconomic Factors: Evidence from GARCH and GARCH-X Estimates," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(1), pages 1-16, February.
    17. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    18. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    19. Kevin B. Grier & Mark J. Perry, 2000. "The effects of real and nominal uncertainty on inflation and output growth: some garch-m evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 45-58.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    21. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    22. Jones, Paul M. & Olson, Eric, 2013. "The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model," Economics Letters, Elsevier, vol. 118(1), pages 33-37.
    23. Christopher Gilbert & Wyn Morgan, 2010. "Has food price volatility risen?," Department of Economics Working Papers 1002, Department of Economics, University of Trento, Italia.
    24. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    25. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    26. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    27. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    28. Michal Andrle & Mr. Andrew Berg & Rogelio Morales & Mr. Rafael A Portillo & Mr. Jan Vlcek, 2013. "Forecasting and Monetary Policy Analysis in Low-Income Countries: Food and non-Food Inflation in Kenya," IMF Working Papers 2013/061, International Monetary Fund.
    29. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    30. Fountas, Stilianos & Karanasos, Menelaos & Kim, Jinki, 2002. "Inflation and output growth uncertainty and their relationship with inflation and output growth," Economics Letters, Elsevier, vol. 75(3), pages 293-301, May.
    31. Mr. Shaun K. Roache, 2010. "What Explains the Rise in Food Price Volatility?," IMF Working Papers 2010/129, International Monetary Fund.
    32. Christopher Herrington & Yash P. Mehra, 2008. "On the sources of movements in inflation expectations : a few insights from a VAR model," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 94(Spr), pages 121-146.
    33. repec:bla:intfin:v:2:y:1999:i:1:p:117-38 is not listed on IDEAS
    34. Sirr, Gordon & Garvey, John & Gallagher, Liam, 2011. "Emerging markets and portfolio foreign exchange risk: An empirical investigation using a value-at-risk decomposition technique," Journal of International Money and Finance, Elsevier, vol. 30(8), pages 1749-1772.
    35. T. Jeffrey Wilks & Mark F. Zimbelman, 2004. "Decomposition of Fraud†Risk Assessments and Auditors' Sensitivity to Fraud Cues," Contemporary Accounting Research, John Wiley & Sons, vol. 21(3), pages 719-745, September.
    36. M. Saisana & A. Saltelli & S. Tarantola, 2005. "Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 307-323, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    2. Shah, Said Zamin & Baharumshah, Ahmad Zubaidi & Hook, Law Siong & Habibullah, Muzafar Shah, 2017. "Nominal uncertainty, real uncertainty and macroeconomic performance in a time-varying asymmetric framework: Implications for monetary policy," Research in International Business and Finance, Elsevier, vol. 42(C), pages 75-93.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    5. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    6. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    9. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    10. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    11. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
    12. Cristina Amado & Annastiina Silvennoinen & Timo Ter¨asvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," NIPE Working Papers 07/2018, NIPE - Universidade do Minho.
    13. Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Van Cauwenberge, Annelies & Vancauteren, Mark & Braekers, Roel & Vandemaele, Sigrid, 2019. "International trade, foreign direct investments, and firms’ systemic risk : Evidence from the Netherlands," Economic Modelling, Elsevier, vol. 81(C), pages 361-386.
    16. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    17. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    18. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    19. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    20. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:31:y:2022:i:2:d:10.1007_s10260-021-00574-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.