IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v44y2010i5p865-880.html
   My bibliography  Save this article

Nonparametric analysis of financial time series by the Kernel methodology

Author

Abstract

This paper aims to study, in the most recent historical time period, the efficiency of the Paris Stock Exchange market. We test its weak form while analysing the stock exchange returns series by nonparametric methods, using kernel methodology in particular. In doing so, our approach extends the traditional view treating the observed cyclical fluctuations on this market.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.
  • Handle: RePEc:spr:qualqt:v:44:y:2010:i:5:p:865-880
    DOI: 10.1007/s11135-009-9239-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-009-9239-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    2. Wolfgang HÄRDLE & H. LÜTKEPOHL & R. CHEN, 1996. "A Review of Nonparametric Time Series Analysis," SFB 373 Discussion Papers 1996,48, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Tschernig, Rolf & Yang, Lijian, 1997. "Nonparametric lag selection for time series," SFB 373 Discussion Papers 1997,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    5. L. Yang & R. Tschernig, 1999. "Multivariate bandwidth selection for local linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 793-815.
    6. Chiu, Shean-Tsong, 1989. "Bandwidth selection for kernel estimate with correlated noise," Statistics & Probability Letters, Elsevier, vol. 8(4), pages 347-354, September.
    7. L. YANG & Wolfgang HÄRDLE, 1996. "Nonparametric Autoregression with Multiplicative Volatility and Additive Mean," SFB 373 Discussion Papers 1996,62, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    9. Bruce Mizrach, 1995. "A Simple Nonparametric Test for Independence," Departmental Working Papers 199523, Rutgers University, Department of Economics.
    10. Wolfgang HÄRDLE & R. CHEN, 1995. "Nonparametric Time Series Analysis, a selectiv review with examples," SFB 373 Discussion Papers 1995,14, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    12. Wolfgang HÄRDLE & A. TSYBAKOV & L. YANG, 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. CHIKHI, Mohamed, 2017. "Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange
      [Exogenous Shocks and nonlinearity in the stock exchange seri
      ," MPRA Paper 76691, University Library of Munich, Germany, revised 2017.
    2. repec:trp:01jefa:jefa0020 is not listed on IDEAS
    3. I. Sánchez-Borrego & M. Rueda & J. Muñoz, 2012. "Nonparametric methods in sample surveys. Application to the estimation of cancer prevalence," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(2), pages 405-414, February.

    More about this item

    Keywords

    Efficiency; Random walk process; Kernel methodology; Functional autoregressive process; Forecasting; Cliometrics;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:44:y:2010:i:5:p:865-880. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.