IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Local Instrumental Variable Estimation Method For Generalized Additive Volatility Models

  • Woocheol Kim
  • Oliver Linton

    ()

We investigate a new separable nonparametric model for time series, which includes many ARCH models and AR models already discussed in the literature. We also propose a new estimation procedure called LIVE, or local instrumental variable estimation, that is based on a localization of the classical instrumental variable method. Our method has considerable computational advantages over the competing marginal integration or projection method. We also consider a more efficient two-step likelihood-based procedure, and show that this yields both asymptotic and finite sample performance gains.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.lse.ac.uk/fmg/workingPapers/discussionPapers/fmgdps/dp509.pdf
Download Restriction: no

Paper provided by Financial Markets Group in its series FMG Discussion Papers with number dp509.

as
in new window

Length:
Date of creation: Sep 2004
Date of revision:
Handle: RePEc:fmg:fmgdps:dp509
Contact details of provider: Web page: http://www.lse.ac.uk/fmg/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  2. Ziegelmann, Flavio A., 2002. "Nonparametric Estimation Of Volatility Functions: The Local Exponential Estimator," Econometric Theory, Cambridge University Press, vol. 18(04), pages 985-991, August.
  3. Enno Mammen & Oliver Linton & J Nielsen, 2000. "The existence and asymptotic properties of a backfitting projection algorithm under weak conditions," LSE Research Online Documents on Economics 2315, London School of Economics and Political Science, LSE Library.
  4. Wolfgang HÄRDLE & A. TSYBAKOV, 1995. "Local Polynomial Estimators of the Volatility Function in Nonparametric Autoregression," SFB 373 Discussion Papers 1995,42, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  5. Oliver Linton & Jens Perch Nielsen & Sara van de Geer, 2001. "Estimating multiplicative and additive hazard functions by kernel methods," LSE Research Online Documents on Economics 2168, London School of Economics and Political Science, LSE Library.
  6. Cai, Zongwu & Masry, Elias, 2000. "Nonparametric Estimation Of Additive Nonlinear Arx Time Series: Local Linear Fitting And Projections," Econometric Theory, Cambridge University Press, vol. 16(04), pages 465-501, August.
  7. Wolfgang HÄRDLE & A. TSYBAKOV & L. YANG, 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  9. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
  10. Masry, Elias & Tjøstheim, Dag, 1997. "Additive Nonlinear ARX Time Series and Projection Estimates," Econometric Theory, Cambridge University Press, vol. 13(02), pages 214-252, April.
  11. Andrews, Donald W.K., 1986. "Empirical process methods in econometrics," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 37, pages 2247-2294 Elsevier.
  12. Linton, Oliver B., 2000. "Efficient Estimation Of Generalized Additive Nonparametric Regression Models," Econometric Theory, Cambridge University Press, vol. 16(04), pages 502-523, August.
  13. O. B. LINTON & R. CHEN & Wolfgang HÄRDLE, 1995. "An Analysis of Transformations for Additive Nonparanetric Regression," SFB 373 Discussion Papers 1995,68, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  14. Terasvirta, Timo & Tjostheim, Dag & W.J. Granger, Clive, 1986. "Aspects of modelling nonlinear time series," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 48, pages 2917-2957 Elsevier.
  15. Yang, Lijian & Härdle, Wolfgang & Nielsen, Jens P., 1998. "Nonparametric autoregression with multiplicative volatility and additive mean," SFB 373 Discussion Papers 1998,107, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  16. repec:cup:etheor:v:13:y:1997:i:2:p:214-52 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fmg:fmgdps:dp509. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (The FMG Administration)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.