IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199662.html

Nonparametric Autoregression with Multiplicative Volatility and Additive Mean

Author

Listed:
  • Yang, L.
  • Härdle, Wolfgang

Abstract

For over a decade, nonparametric modelling has been successfully applied to studying nonlinear structures in financial time series. It is well known that the usual nonparametric models often have less than satisfactory performance when dealing with more than one lag. When the mean has an additive structure, however, better estimation methods are available which fully exploit such a structure. Although in the past such nonparametric applications had been focused more on the estimation of the conditional mean, it is equally if not more important to measure the future risk of the series along with the mean. For the volatility function, i.e. the conditional variance given the past, a multiplicative structure is more appropriate than an additive structure, as the volatility is a positive scale function and a multiplicative model provides a better interpretation of each lagged value's influence on such a function. In this paper we consider the joint estimation of both the additive mean and the multiplicative volatility. The technique used is marginally integrated local polynomial estimation. The procedure is applied to the deutschmark/US dollar daily exchange returns.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Yang, L. & Härdle, Wolfgang, 1996. "Nonparametric Autoregression with Multiplicative Volatility and Additive Mean," SFB 373 Discussion Papers 1996,62, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199662
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.