IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/19991.html
   My bibliography  Save this paper

Estimation in an additive model when the components are linked parametrically

Author

Listed:
  • Carroll, Raymond J.
  • Härdle, Wolfgang
  • Mammen, Enno

Abstract

Motivated by a nonparametric GARCH model we consider nonparametric additive regression and autoregression models in the special case that the additive components are linked parametrically. We show that the parameter can be estimated with parametric rate and give the normal limit. Our procedure is based on two steps. In the first step nonparametric smoothers are used for the estimation of each additive component without taking into account the parametric link of the functions. In a second step the parameter is estimated by using the parametric restriction between the additive components. Interestingly, our method needs no undersmoothing in the first step.

Suggested Citation

  • Carroll, Raymond J. & Härdle, Wolfgang & Mammen, Enno, 1999. "Estimation in an additive model when the components are linked parametrically," SFB 373 Discussion Papers 1999,1, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:19991
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/61777/1/722157428.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    2. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
    3. Gourieroux, Christian & Monfort, Alain, 1992. "Qualitative threshold ARCH models," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 159-199.
    4. P. BOSSAERTS & C. HAFNER & Wolfgang HÄRDLE, 1996. "Foreign Exchange Rates Have Surprising Volatility," SFB 373 Discussion Papers 1996,68, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. J. FAN & Wolfgang HÄRDLE & Enno MAMMEN, 1996. "Direct estimation of low dimensional components in additive models," SFB 373 Discussion Papers 1996,17, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Wolfgang HÄRDLE & A. TSYBAKOV & L. YANG, 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Goodhart, C. A. E. & Figliuoli, L., 1991. "Every minute counts in financial markets," Journal of International Money and Finance, Elsevier, vol. 10(1), pages 23-52, March.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dette, Holger & Pardo-Fernandez, Juan Carlos & van Keilegom, Ingrid, 2007. "Goodness-of-fit tests for multiplicativemodels with dependent data," Technical Reports 2007,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:19991. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/sfhubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.