IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2007-41.html
   My bibliography  Save this paper

Forecasting with small macroeconomic VARs in the presence of instabilities

Author

Listed:
  • Todd E. Clark
  • Michael W. McCracken

Abstract

Small-scale VARs are widely used in macroeconomics for forecasting U.S. output, prices, and interest rates. However, recent work suggests these models may exhibit instabilities. As such, a variety of estimation or forecasting methods might be used to improve their forecast accuracy. These include using different observation windows for estimation, intercept correction, time-varying parameters, break dating, Bayesian shrinkage, model averaging, etc. This paper compares the effectiveness of such methods in real time forecasting. We use forecasts from univariate time series models, the Survey of Professional Forecasters and the Federal Reserve Board's Greenbook as benchmarks.

Suggested Citation

  • Todd E. Clark & Michael W. McCracken, 2007. "Forecasting with small macroeconomic VARs in the presence of instabilities," Finance and Economics Discussion Series 2007-41, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2007-41
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/feds/2007/200741/200741abs.html
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/feds/2007/200741/200741pap.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Rubaszek & Pawel Skrzypczynski, 2007. "Can a simple DSGE model outperform Professional Forecasters?," NBP Working Papers 43, Narodowy Bank Polski, Economic Research Department.
    2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.),Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    3. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage combination from a real-time dataset," CSEF Working Papers 274, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    4. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    5. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    6. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    7. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    9. II & Edward S. Knotek, 2007. "How useful is Okun's law?," Economic Review, Federal Reserve Bank of Kansas City, vol. 92(Q IV), pages 73-103.
    10. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
    11. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    12. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    13. Albuquerque, Bruno & Baumann, Ursel & Seitz, Franz, 2016. "What does money and credit tell us about real activity in the United States?," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 328-347.
    14. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.

    More about this item

    Keywords

    Economic forecasting; Real-time data; Econometric models;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2007-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/frbgvus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.